Search Results

Now showing 1 - 10 of 17
  • Item
    Mechanistic Understanding of the Heterogeneous, Rhodium-Cyclic (Alkyl)(Amino)Carbene-Catalyzed (Fluoro-)Arene Hydrogenation
    (Washington, DC : American Chemical Society, 2020) Moock D.; Wiesenfeldt M.P.; Freitag M.; Muratsugu S.; Ikemoto S.; Knitsch R.; Schneidewind J.; Baumann W.; Schäfer A.H.; Timmer A.; Tada M.; Hansen M.R.; Glorius F.
    Recently, chemoselective methods for the hydrogenation of fluorinated, silylated, and borylated arenes have been developed providing direct access to previously unattainable, valuable products. Herein, a comprehensive study on the employed rhodium-cyclic (alkyl)(amino)carbene (CAAC) catalyst precursor is disclosed. Mechanistic experiments, kinetic studies, and surface-spectroscopic methods revealed supported rhodium(0) nanoparticles (NP) as the active catalytic species. Further studies suggest that CAAC-derived modifiers play a key role in determining the chemoselectivity of the hydrogenation of fluorinated arenes, thus offering an avenue for further tuning of the catalytic properties. Copyright © 2020 American Chemical Society.
  • Item
    Cobalt pincer complexes for catalytic reduction of nitriles to primary amines
    (London : RSC Publ., 2019) Schneekönig, Jacob; Tannert, Bianca; Hornke, Helen; Beller, Matthias; Junge, Kathrin
    Various cobalt pincer type complexes 1-6 were applied for the catalytic hydrogenation of nitriles to amines. Among these, catalyst 4 is the most efficient, allowing the reduction of aromatic as well as aliphatic nitriles in moderate to excellent yields. © 2019 The Royal Society of Chemistry.
  • Item
    Facile synthesis of iron-titanate nanocomposite as a sustainable material for selective amination of substitued nitro-arenes
    (Basel : MDPI, 2020) Sohail, Manzar; Tahir, Nimra; Rubab, Anosha; Beller, Matthias; Sharif, Muhammad
    The fabrication of durable and low-cost nanostructured materials remains important in chemical, biologic and medicinal applications. Particularly, iron-based nanomaterials are of central importance due to the ‘noble’ features of iron such as its high abundance, low cost and non-toxicity. Herein we report a simple sol–gel method for the synthesis of novel iron–titanium nanocomposite-based material (Fe9TiO15@TiO2). In order to prepare this material, we made a polymeric gel using ferrocene, titanium isopropoxide and THF precursors. The calcination of this gel in air at 500◦C produced Fe-Ti bimetallic nanoparticles-based composite and nano-TiO2 as support. Noteworthy, our methodology provides an excellent control over composition, size and shape of the resulting nanoparticles. The resulted Fe-based material provides a sustainable catalyst for selective synthesis of anilines, which are key intermediates for the synthesis of several chemicals, dyes and materials, via reduction of structurally diverse and functionalized nitroarenes. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Efficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese-PNN pincer complex
    (Cambridge : RSC, 2017) Papa, Veronica; Cabrero-Antonino, Jose R.; Alberico, Elisabetta; Spanneberg, Anke; Junge, Kathrin; Junge, Henrik; Beller, Matthias
    Novel well-defined NNP and PNP manganese pincer complexes have been synthetized and fully characterized. The catalyst Mn-2 containing an imidazolyaminolphosphino ligand shows high activity and selectivity in the hydrogenation of a wide range of secondary and tertiary amides to the corresponding alcohols and amines, under relatively mild conditions. For the first time, more challenging substrates like primary aromatic amides including an actual herbicide can also be hydrogenated using this earth-abundant metal-based pincer catalyst.
  • Item
    Facile synthesis of supported Ru-Triphos catalysts for continuous flow application in selective nitrile reduction
    (Cambridge : RSC, 2019) Konrath, Robert; Heutz, Frank J.L.; Steinfeldt, Norbert; Rockstroh, Nils; Kamer, Paul C.J.
    The selective catalytic hydrogenation of nitriles represents an important but challenging transformation for many homogeneous and heterogeneous catalysts. Herein, we report the efficient and modular solid-phase synthesis of immobilized Triphos-type ligands in very high yields, involving only minimal work-up procedures. The corresponding supported ruthenium-Triphos catalysts are tested in the hydrogenation of various nitriles. Under mild conditions and without the requirement of additives, the tunable supported catalyst library provides selective access to both primary amines and secondary imines. Moreover, the first application of a Triphos-type catalyst in a continuous flow process is presented demonstrating high catalyst life-time over at least 195 hours without significant activity loss. © 2019 The Royal Society of Chemistry.
  • Item
    Development and Application of Efficient Ag‐based Hydrogenation Catalysts Prepared from Rice Husk Waste
    (Weinheim : Wiley-VCH, 2021) Unglaube, Felix; Kreyenschulte, Carsten Robert; Mejía, Esteban
    The development of strategies for the sustainable management and valorization of agricultural waste is of outmost importance. With this in mind, we report the use of rice husk (RH) as feedstock for the preparation of heterogeneous catalysts for hydrogenation reactions. The catalysts were prepared by impregnating the milled RH with a silver nitrate solution followed by carbothermal reduction. The composition and morphology of the prepared catalysts were fully assessed by IR, AAS, ICP-MS, XPS, XRD and STEM techniques. This novel bio-genic silver-based catalysts showed excellent activity and remarkable selectivity in the hydrogenation of nitro groups in both aromatic and aliphatic substrates, even in the presence of reactive functionalities like halogens, carbonyls, borate esters or nitriles. Recycling experiments showed that the catalysts can be easily recovered and reused multiple times without significant drop in performance and without requiring re-activation. © 2021 The Authors. ChemCatChem published by Wiley-VCH GmbH
  • Item
    Enantio- and diastereoselective synthesis of γ-amino alcohols
    (Cambridge : Soc., 2015) Verkade, Jorge M. M.; Quaedflieg, Peter J. L. M.; Verzijl, Gerard K. M.; Lefort, Laurent; van Delft, Floris L.; de Vries, Johannes G.; Rutjes, Floris P. J. T.
    The γ-amino alcohol structural motif is often encountered in drugs and natural products. We developed two complementary catalytic diastereoselective methods for the synthesis of N-PMP-protected γ-amino alcohols from the corresponding ketones. The anti-products were obtained through Ir-catalyzed asymmetric transfer hydrogenation, the syn-products via Rh-catalyzed asymmetric hydrogenation.
  • Item
    Towards a general ruthenium-catalyzed hydrogenation of secondary and tertiary amides to amines
    (Cambridge : RSC, 2016) Cabrero-Antonino, Jose R.; Alberico, Elisabetta; Junge, Kathrin; Junge, Henrik; Beller, Matthias
    A broad range of secondary and tertiary amides has been hydrogenated to the corresponding amines under mild conditions using an in situ catalyst generated by combining [Ru(acac)3], 1,1,1-tris(diphenylphosphinomethyl)ethane (Triphos) and Yb(OTf)3. The presence of the metal triflate allows to mitigate reaction conditions compared to previous reports thus improving yields and selectivities in the desired amines. The excellent isolated yields of two scale-up experiments corroborate the feasibility of the reaction protocol. Control experiments indicate that, after the initial reduction of the amide carbonyl group, the reaction proceeds through the reductive amination of the alcohol with the amine arising from collapse of the intermediate hemiaminal.
  • Item
    General and selective synthesis of primary amines using Ni-based homogeneous catalysts
    (Cambridge : RSC, 2020) Murugesan, Kathiravan; Wei, Zhihong; Chandrashekhar, Vishwas G.; Jiao, Haijun; Beller, Matthias; Jagadeesh, Rajenahally V.
    The development of base metal catalysts for industrially relevant amination and hydrogenation reactions by applying abundant and atom economical reagents continues to be important for the cost-effective and sustainable synthesis of amines which represent highly essential chemicals. In particular, the synthesis of primary amines is of central importance because these compounds serve as key precursors and central intermediates to produce value-added fine and bulk chemicals as well as pharmaceuticals, agrochemicals and materials. Here we report a Ni-triphos complex as the first Ni-based homogeneous catalyst for both reductive amination of carbonyl compounds with ammonia and hydrogenation of nitroarenes to prepare all kinds of primary amines. Remarkably, this Ni-complex enabled the synthesis of functionalized and structurally diverse benzylic, heterocyclic and aliphatic linear and branched primary amines as well as aromatic primary amines starting from inexpensive and easily accessible carbonyl compounds (aldehydes and ketones) and nitroarenes using ammonia and molecular hydrogen. This Ni-catalyzed reductive amination methodology has been applied for the amination of more complex pharmaceuticals and steroid derivatives. Detailed DFT computations have been performed for the Ni-triphos based reductive amination reaction, and they revealed that the overall reaction has an inner-sphere mechanism with H2metathesis as the rate-determining step. © The Royal Society of Chemistry 2020.
  • Item
    A robust iron catalyst for the selective hydrogenation of substituted (iso)quinolones
    (Cambridge : RSC, 2018) Sahoo, Basudev; Kreyenschulte, Carsten; Agostini, Giovanni; Lund, Henrik; Bachmann, Stephan; Scalone, Michelangelo; Junge, Kathrin; Beller, Matthias
    By applying N-doped carbon modified iron-based catalysts, the controlled hydrogenation of N-heteroarenes, especially (iso)quinolones, is achieved. Crucial for activity is the catalyst preparation by pyrolysis of a carbon-impregnated composite, obtained from iron(ii) acetate and N-aryliminopyridines. As demonstrated by TEM, XRD, XPS and Raman spectroscopy, the synthesized material is composed of Fe(0), Fe3C and FeNx in a N-doped carbon matrix. The decent catalytic activity of this robust and easily recyclable Fe-material allowed for the selective hydrogenation of various (iso)quinoline derivatives, even in the presence of reducible functional groups, such as nitriles, halogens, esters and amides. For a proof-of-concept, this nanostructured catalyst was implemented in the multistep synthesis of natural products and pharmaceutical lead compounds as well as modification of photoluminescent materials. As such this methodology constitutes the first heterogeneous iron-catalyzed hydrogenation of substituted (iso)quinolones with synthetic importance.