Search Results

Now showing 1 - 4 of 4
  • Item
    Preface Sea hazards
    (Göttingen : Copernicus GmbH, 2013) Pelinovsky, E.; Didenkulova, I.; Mendez, F.; Rybski, D.; Tinti, S.
    [No abstract available]
  • Item
    Assessing social capacity and vulnerability of private households to natural hazards - Integrating psychological and governance factors
    (Göttingen : Copernicus GmbH, 2013) Werg, J.; Grothmann, T.; Schmidt, P.
    People are unequally affected by extreme weather events in terms of mortality, morbidity and financial losses; this is the case not only for developing, but also for industrialized countries. Previous research has established indicators for identifying who is particularly vulnerable and why, focusing on socio-demographic factors such as income, age, gender, health and minority status. However, these factors can only partly explain the large disparities in the extent to which people are affected by natural hazards. Moreover, these factors are usually not alterable in the short to medium term, which limits their usefulness for strategies of reducing social vulnerability and building social capacity. Based on a literature review and an expert survey, we propose an approach for refining assessments of social vulnerability and building social capacity by integrating psychological and governance factors.
  • Item
    An extended singular spectrum transformation (SST) for the investigation of Kenyan precipitation data
    (Göttingen : Copernicus GmbH, 2013) Itoh, N.; Marwan, N.
    In this paper a change-point detection method is proposed by extending the singular spectrum transformation (SST) developed as one of the capabilities of singular spectrum analysis (SSA). The method uncovers change points related with trends and periodicities. The potential of the proposed method is demonstrated by analysing simple model time series including linear functions and sine functions as well as real world data (precipitation data in Kenya). A statistical test of the results is proposed based on a Monte Carlo simulation with surrogate methods. As a result, the successful estimation of change points as inherent properties in the representative time series of both trend and harmonics is shown. With regards to the application, we find change points in the precipitation data of Kenyan towns (Nakuru, Naivasha, Narok, and Kisumu) which coincide with the variability of the Indian Ocean Dipole (IOD) suggesting its impact of extreme climate in East Africa.
  • Item
    Correlation-Based characterisation of time-Varying dynamical complexity in the Earth's magnetosphere
    (Göttingen : Copernicus GmbH, 2013) Donner, R.V.; Balasis, G.
    The dynamical behaviour of the magnetosphere is known to be a sensitive indicator for the response of the system to solar wind coupling. Since the solar activity commonly displays very interesting non-stationary and multi-scale dynamics, the magnetospheric response also exhibits a high degree of dynamical complexity associated with fundamentally different characteristics during periods of quiescence and magnetic storms. The resulting temporal complexity profile has been explored using several approaches from applied statistics, dynamical systems theory and statistical mechanics. Here, we propose an alternative way of looking at time-varying dynamical complexity of nonlinear geophysical time series utilising subtle but significant changes in the linear autocorrelation structure of the recorded data. Our approach is demonstrated to sensitively trace the dynamic signatures associated with intense magnetic storms, and to display reasonable skills in distinguishing between quiescence and storm periods. The potentials and methodological limitations of this new viewpoint are discussed in some detail.