Search Results

Now showing 1 - 8 of 8
  • Item
    Pattern formation on Ge by low energy ion beam erosion
    (Bristol : IOP, 2013) Teichmann, M.; Lorbeer, J.; Ziberi, B.; Frost, F.; Rauschenbach, B.
    Modification of nanoscale surface topography is inherent to low-energy ion beam erosion processes and is one of the most important fields of nanotechnology. In this report a comprehensive study of surface smoothing and self-organized pattern formation on Ge(100) by using different noble gases ion beam erosion is presented. The investigations focus on low ion energies ( 2000 eV) and include the entire range of ion incidence angles. It is found that for ions (Ne, Ar) with masses lower than the mass of the Ge target atoms, no pattern formation occurs and surface smoothing is observed for all angles of ion incidence. In contrast, for erosion with higher mass ions (Kr, Xe), ripple formation starts at incidence angles of about 65° depending on ion energy. At smaller incident angles surface smoothing occurs again. Investigations of the surface dynamics for specific ion incidence angles by changing the ion fluence over two orders of magnitude gives a clear evidence for coarsening and faceting of the surface pattern. Both observations indicate that gradient-dependent sputtering and reflection of primary ions play crucial role in the pattern evolution, just at the lowest accessible fluences. The results are discussed in relation to recently proposed redistributive or stress-induced models for pattern formation. In addition, it is argued that a large angular variation of the sputter yield and reflected primary ions can significantly contribute to pattern formation and evolution as nonlinear and non-local processes as supported by simulation of sputtering and ion reflection.
  • Item
    Manifestations of impurity-induced s±⇒s++ transition: Multiband model for dynamical response functions
    (Bristol : IOP, 2013) Efremov, D.; Golubov, A.A.; Dolgov, O.V.
    We investigate the effects of disorder on the density of states, the single-particle response function and optical conductivity in multiband superconductors with s± symmetry of the order parameter, where s± → s++ transition may take place. In the vicinity of the transition, the superconductive gapless regime is realized. It manifests itself in anomalies in the above-mentioned properties. As a result, intrinsically phase-insensitive experimental methods such as angle-resolved photoemission spectroscopy, tunneling and terahertz spectroscopy may be used to reveal information about the underlying order parameter symmetry.
  • Item
    Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids
    (Bristol : IOP, 2013) Woerner, M.; Kuehn, W.; Bowlan, P.; Reimann, K.; Elsaesser, T.
    Recent experimental progress has allowed for the implementation of nonlinear two-dimensional (2D) terahertz (THz) spectroscopy in the ultrafast time domain. We discuss the principles of this technique based on multiple phase-locked electric field transients interacting in a collinear geometry with a solid and the phase-resolved detection of the THz fields after interaction with the sample. To illustrate the potential of this new method, 2D correlation spectra of coupled intersubband-longitudinal optical phonon excitations in a double quantum well system and a study of ultrafast carrier dynamics in graphene are presented.
  • Item
    History and future of the scientific consensus on anthropogenic global warming
    (Bristol : IOP, 2013) Reusswig, F.
    The article by Cook et al offers an interesting new methodological approach to the debate about (supposedly lacking) scientific consensus on global warming, showing that contrarian claims that there was no such consensus are clearly misleading. But once the attribution issue can be regarded as settled, new questions and controversies arise. They ultimately result from the different technological and organizational pathways towards a new global society model that takes its adverse climate change effects into account and seeks for new, but also risky solutions.
  • Item
    What metrics best reflect the energy and carbon intensity of cities? Insights from theory and modeling of 20 US cities
    (Bristol : IOP, 2013) Ramaswami, A.; Chavez, A.
    Three broad approaches have emerged for energy and greenhouse gas (GHG) accounting for individual cities: (a) purely in-boundary source-based accounting (IB); (b) community-wide infrastructure GHG emissions footprinting (CIF) incorporating life cycle GHGs (in-boundary plus trans-boundary) of key infrastructures providing water, energy, food, shelter, mobility-connectivity, waste management/sanitation and public amenities to support community-wide activities in cities - all resident, visitor, commercial and industrial activities; and (c) consumption-based GHG emissions footprints (CBF) incorporating life cycle GHGs associated with activities of a sub-set of the community - its final consumption sector dominated by resident households. The latter two activity-based accounts are recommended in recent GHG reporting standards, to provide production-dominated and consumption perspectives of cities, respectively. Little is known, however, on how to normalize and report the different GHG numbers that arise for the same city. We propose that CIF and IB, since they incorporate production, are best reported per unit GDP, while CBF is best reported per capita. Analysis of input-output models of 20 US cities shows that GHGCIF/GDP is well suited to represent differences in urban energy intensity features across cities, while GHGCBF/capita best represents variation in expenditures across cities. These results advance our understanding of the methods and metrics used to represent the energy and GHG performance of cities.
  • Item
    The role of the Kramers-Henneberger atom in the higher-order Kerr effect
    (Bristol : IOP, 2013) Richter, M.; Patchkovskii, S.; Morales, F.; Smirnova, O.; Ivanov, M.
    We discuss the connection between strong-field ionization, saturation of the Kerr response and the formation of the Kramers-Henneberger (KH) atom and long-living excitations in intense infrared (IR) external fields. We present a generalized model for the intensity-dependent response of atoms in strong IR laser fields, describing deviations in the nonlinear response at the frequency of the driving field from the standard model. We show that shaping the driving laser pulse allows one to reveal signatures of the excited KH states in the Kerr response of an individual atom.
  • Item
    Photon transport in one-dimensional systems coupled to three-level quantum impurities
    (Bristol : IOP, 2013) Martens, C.; Longo, P.; Busch, K.
    We discuss the transport properties of a single photon in a one-dimensional waveguide with an embedded three-level atom and utilize both stationary plane-wave solutions and time-dependent transport calculations to investigate the interaction of a photon with driven and undriven V- and Λ-systems. Specifically, for the case of an undriven V-system, we analyze the phenomenon of long-time occupation of the upper atomic levels in conjunction with almost dark states. For the undriven Λ-system, we find non-stationary dark states and we explain how the photon's transmittance can be controlled by an initial phase difference between the energetically lower-lying atomic states. With regard to the driven three-level systems, we discuss electromagnetically induced transparency in terms of the pulse propagation of a single photon through a Λ-type atom. In addition, we demonstrate how a driven V-type atom can be utilized to control the momentum distribution of the scattered photon.
  • Item
    Vectorial nonlinear coherent response of a strongly confined exciton-biexciton system
    (Bristol : IOP, 2013) Kasprzak, J.; Portolan, S.; Rastelli, A.; Wang, L.; Plumhof, J.D.; Schmidt, O.G.; Langbein, W.
    The vectorial four-wave mixing response of an individual strongly confined exciton-biexciton system with fine-structure splitting in a GaAs/AlGaAs quantum dot is measured by dual-polarization heterodyne spectral interferometry. The results are compared with theoretical predictions based on the optical Bloch equations. The system is described by a four-level scheme, which is a model system of the nonlinear excitonic response in low-dimensional semiconductors. We measure its coherence properties and determine the underlying dephasing mechanisms. An impact of the inhomogeneous broadening by spectral wandering on the coherent response is investigated. We further discuss the different four-wave mixing pathways, polarization selection rules, the time-resolved polarization state, the vectorial response in two-dimensional four-wave mixing and ensemble properties.