Search Results

Now showing 1 - 3 of 3
  • Item
    Planetary geostrophic equations for the atmosphere with evolution of the barotropic flow
    (Amsterdam : Elsevier, 2009) Dolaptchiev, S.I.; Klein, R.
    Atmospheric phenomena such as the quasi-stationary Rossby waves, teleconnection patterns, ultralong persistent blockings and the polar/subtropical jet are characterized by planetary spatial scales, i.e. scales of the order of the earth's radius. This motivates our interest in the relevant physical processes acting on the planetary scales. Using an asymptotic approach, we systematically derive reduced model equations valid for atmospheric motions with planetary spatial scales and a temporal scale of the order of about 1 week. We assume variations of the background potential temperature comparable in magnitude with those adopted in the classical quasi-geostrophic theory. At leading order, the resulting equations include the planetary geostrophic balance. In order to apply these equations to the atmosphere, one has to prescribe a closure for the vertically averaged pressure. We present an evolution equation for this component of the pressure which was derived in a systematic way from the asymptotic analysis. Relative to the prognostic closures adopted in existing reduced-complexity planetary models, this new dynamical closure may provide for more realistic increased large-scale, long-time variability in future implementations. © 2008 Elsevier B.V. All rights reserved.
  • Item
    The global technical potential of bio-energy in 2050 considering sustainability constraints
    (Amsterdam : Elsevier, 2010) Haberl, H.; Beringer, T.; Bhattacharya, S.C.; Erb, K.-H.; Hoogwijk, M.
    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets ('technical potential'). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160-270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization ('cascade utilization') of biomass flows. © 2010 Elsevier B.V.
  • Item
    Low-stabilisation scenarios and technologies for carbon capture and sequestration
    (Amsterdam : Elsevier, 2009) Bauer, N.; Edenhofer, O.; Leimbach, M.
    Endogenous technology scenarios for meeting low stabilization CO2 targets are derived in this study and assessed regarding emission reductions and mitigation costs. The aim is to indentify the most important technology options for achieving low stabilization targets. The significance of an option is indicated by its achieved emission reduction and the mitigation cost increase, if this option were not available. Quantitative results are computed using a global multi-regional hard-linked hybrid model that integrates the economy, the energy sector and the climate system. The model endogenously determines the optimal deployment of technologies subject to a constraint on climate change. The alternative options in the energy sector comprise the most important mitigation technologies: renewables, biomass, nuclear, carbon capture and sequestration (CCS), and biomass with CCS as well as energy efficiency improvements. The results indicate that the availability of CCS technologies and espec. biomass with CCS is highly desirable for achieving low stabilization goals at low costs. The option of nuclear energy is different: although it could play an important role in the primary energy mix, mitigation costs would only mildly increase, if it could not be expanded. Therefore, in order to promote prudent climate change mitigation goals, support of CCS technologies reduces the costs and-thus-is desirable from a social point of view. © 2009 Elsevier Ltd. All rights reserved.