Search Results

Now showing 1 - 10 of 48
Loading...
Thumbnail Image
Item

Graphene Q-switched Yb:KYW planar waveguide laser

2015, Kim, Jun Wan, Young Choi, Sun, Aravazhi, Shanmugam, Pollnau, Markus, Griebner, Uwe, Petrov, Valentin, Bae, Sukang, Jun Ahn, Kwang, Yeom, Dong-Il, Rotermund, Fabian

A diode-pumped Yb:KYW planar waveguide laser, single-mode Q-switched by evanescent-field interaction with graphene, is demonstrated for the first time. Few-layer graphene grown by chemical vapor deposition is transferred onto the top of a guiding layer, which initiates stable Q-switched operation in a 2.4-cm-long waveguide laser operating near 1027 nm. Average output powers up to 34 mW and pulse durations as short as 349 ns are achieved. The measured output beam profile, clearly exhibiting a single mode, agrees well with the theoretically calculated mode intensity distribution inside the waveguide. As the pump power is increased, the repetition rate and pulse energy increase from 191 to 607 kHz and from 7.4 to 58.6 nJ, respectively, whereas the pulse duration decreases from 2.09 μs to 349 ns.

Loading...
Thumbnail Image
Item

Excited-state relaxation of hydrated thymine and thymidine measured by liquid-jet photoelectron spectroscopy: experiment and simulation

2015, Buchner, Franziska, Nakayama, Akira, Yamazaki, Shohei, Ritze, Hans-Hermann, Lübcke, Andrea

Time-resolved photoelectron spectroscopy is performed on thymine and thymidine in aqueous solution to study the excited-state relaxation dynamics of these molecules. We find two contributions with sub-ps lifetimes in line with recent excited-state QM/MM molecular dynamics simulations (J. Chem. Phys.2013, 139, 214304). The temporal evolution of ionization energies for the excited ππ* state along the QM/MM molecular dynamics trajectories were calculated and are compatible with experimental results, where the two contributions correspond to the relaxation paths in the ππ* state involving different conical intersections with the ground state. Theoretical calculations also show that ionization from the nπ* state is possible at the given photon energies, but we have not found any experimental indication for signal from the nπ* state. In contrast to currently accepted relaxation mechanisms, we suggest that the nπ* state is not involved in the relaxation process of thymine in aqueous solution.

Loading...
Thumbnail Image
Item

Experimental strategies for optical pump - Soft x-ray probe experiments at the LCLS

2014, McFarland, B.K., Berrah, N., Bostedt, C., Bozek, J., Bucksbaum, P.H., Castagna, J.C., Coffee, R.N., Cryan, J.P., Fang, L., Farrell, J.P., Feifel, R., Gaffney, K.J., Glownia, J.M., Martinez, T.J., Miyabe, S., Mucke, M., Murphy, B., Natan, A., Osipov, T., Petrovic, V.S., Schorb, S., Schultz, T., Spector, L.S., Swiggers, M., Tarantelli, F., Tenney, I., Wang, S., White, J.L., White, W., Gühr, M.

Free electron laser (FEL) based x-ray sources show great promise for use in ultrafast molecular studies due to the short pulse durations and site/element sensitivity in this spectral range. However, the self amplified spontaneous emission (SASE) process mostly used in FELs is intrinsically noisy resulting in highly fluctuating beam parameters. Additionally timing synchronization of optical and FEL sources adds delay jitter in pump-probe experiments. We show how we mitigate the effects of source noise for the case of ultrafast molecular spectroscopy of the nucleobase thymine. Using binning and resorting techniques allows us to increase time and spectral resolution. In addition, choosing observables independent of noisy beam parameters enhances the signal fidelity.

Loading...
Thumbnail Image
Item

Competition between excited state proton and OH- transport via a short water wire: Solvent effects open the gate

2014, Bekçioǧlu, G., Allolio, C., Ekimova, M., Nibbering, E.T.J., Sebastiani, D.

We investigate the acid-base proton exchange reaction in a microsolvated bifunctional chromophore by means of quantum chemical calculations. The UV/vis spectroscopy shows that equilibrium of the keto-and enol-forms in the electronic ground state is shifted to the keto conformation in the excited state. A previously unknown mechanism involving a hydroxide ion transport along a short water wire is characterized energetically, which turns out to be competitive with the commonly assumed proton transport. Both mechanisms are shown to have a concerted character, as opposed to a step-wise mechanism. The alternative mechanism of a hydrogen atom transport is critically examined, and evidence for strong solvent dependence is presented. Specifically, we observe electrostatic destabilization of the corresponding πσ* state by the aqueous solvent. As a consequence, no conical intersections are found along the reaction pathway.

Loading...
Thumbnail Image
Item

Photoluminescence lineshape of ZnO

2014, Ullrich, B., Singh, A.K., Bhowmick, M., Barik, P., Ariza-Flores, D., Xi, H., Tomm, J.W.

The merger of the absorption coefficient dispersion, retrieved from transmission by the modified Urbach rule introduced by Ullrich and Bouchenaki [Jpn. J. Appl. Phys. 30, L1285, 1991], with the extended Roosbroeck-Shockley relation reveals that the optical absorption in ZnO distinctively determines the photoluminescence lineshape. Additionally, the ab initio principles employed enable the accurate determination of the carrier lifetime without further specific probing techniques.

Loading...
Thumbnail Image
Item

Femtosecond stimulated Raman spectroscopy of the cyclobutane thymine dimer repair mechanism: A computational study

2014, Ando, H., Fingerhut, B.P., Dorfman, K.E., Biggs, J.D., Mukamel, S.

Cyclobutane thymine dimer, one of the major lesions in DNA formed by exposure to UV sunlight, is repaired in a photoreactivation process, which is essential to maintain life. The molecular mechanism of the central step, i.e., intradimer C-C bond splitting, still remains an open question. In a simulation study, we demonstrate how the time evolution of characteristic marker bands (C=O and C=C/C-C stretch vibrations) of cyclobutane thymine dimer and thymine dinucleotide radical anion, thymidylyl(3′→5′)-thymidine, can be directly probed with femtosecond stimulated Raman spectroscopy (FSRS). We construct a DFT(M05-2X) potential energy surface with two minor barriers for the intradimer C5-C′5 splitting and a main barrier for the C6-C′6 splitting, and identify the appearance of two C5=C6 stretch vibrations due to the C6-C′6 splitting as a spectroscopic signature of the underlying bond splitting mechanism. The sequential mechanism shows only absorptive features in the simulated FSRS signals, whereas the fast concerted mechanism shows characteristic dispersive line shapes. (Figure Presented).

Loading...
Thumbnail Image
Item

Setup of an 8 keV laboratory transmission x-ray microscope

2014, Baumbach, S., Kanngießer, B., Malzer, W., Stiel, H., Bjeoumikhova, S., Wilhein, T.

This article presents a concept and the first results for the setup of an 8keV laboratory transmission x-ray microscope with a polycapillary optic as condenser at the BliX in Berlin. The incentive of building such a microscope is that the penetration depth for hard x-rays is much higher than in the soft x-ray range, e.g. The water window. Therefore, it is possible to investigate even dense materials such as metal compounds, bones or geological samples. The future aim is to achieve a spatial resolution better than 200 nm.

Loading...
Thumbnail Image
Item

Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states

2014, Schell, A.W., Engel, P., Werra, J.F.M., Wolff, C., Busch, K., Benson, O.

Their intrinsic properties render single quantum systems as ideal tools for quantum enhanced sensing and microscopy. As an additional benefit, their size is typically on an atomic scale that enables sensing with very high spatial resolution. Here, we report on utilizing a single nitrogen vacancy center in nanodiamond for performing three-dimensional scanning-probe fluorescence lifetime imaging microscopy. By measuring changes of the single emitter's lifetime, information on the local density of optical states is acquired at the nanoscale. Three-dimensional ab initio discontinuous Galerkin time-domain simulations are used in order to verify the results and to obtain additional insights. This combination of experiment and simulations to gather quantitative information on the local density of optical states is of direct relevance for the understanding of fundamental quantum optical processes as well as for the engineering of novel photonic and plasmonic devices.

Loading...
Thumbnail Image
Item

Photoelectron holography in strong optical and dc electric fields

2014, Stodolna, A., Huismans, Y., Rouzée, A., Lépine, F., Vrakking, M.J.J.

The application of velocity map imaging for the detection of photoelectrons resulting from atomic or molecular ionization allows the observation of interferometric, and in some cases holographic structures that contain detailed information on the target from which the photoelecrons are extracted. In this contribution we present three recent examples of the use of photoelectron velocity map imaging in experiments where atoms are exposed to strong optical and dc electric fields. We discuss (i) observations of the nodal structure of Stark states of hydrogen measured in a dc electric field, (ii) mid-infrared strong-field ionization of metastable Xe atoms and (iii) the reconstruction of helium electronic wavepackets in an attosecond pump-probe experiment. In each case, the interference between direct and indirect electron pathways, reminiscent of the reference and signal waves in holography, is seen to play an important role.

Loading...
Thumbnail Image
Item

Plasma rotation with circularly polarized laser pulse

2015, Lécz, Z., Andreev, A., Seryi, A.

The efficient transfer of angular orbital momentum from circularly polarized laser pulses into ions of solid density targets is investigated with different geometries using particle-in-cell simulations. The detailed electron and ion dynamics presented focus upon the energy and momentum conversion efficiency. It is found that the momentum transfer is more efficient for spiral targets and the maximum value is obtained when the spiral step is equal to twice the laser wavelength. This study reveals that the angular momentum distribution of ions strongly depends up on the initial target shape and density.