Search Results

Now showing 1 - 10 of 44
Loading...
Thumbnail Image
Item

Conformations of a Long Polymer in a Melt of Shorter Chains: Generalizations of the Flory Theorem

2015, Lang, Michael, Rubinstein, Michael, Sommer, Jens-Uwe

Large-scale simulations of the swelling of a long N-mer in a melt of chemically identical P-mers are used to investigate a discrepancy between theory and experiments. Classical theory predicts an increase of probe chain size R ∼ P–0.18 with decreasing degree of polymerization P of melt chains in the range of 1 < P < N1/2. However, both experiment and simulation data are more consistent with an apparently slower swelling R ∼ P–0.1 over a wider range of melt degrees of polymerization. This anomaly is explained by taking into account the recently discovered long-range bond correlations in polymer melts and corrections to excluded volume. We generalize the Flory theorem and demonstrate that it is in excellent agreement with experiments and simulations.

Loading...
Thumbnail Image
Item

Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications

2014, Appelhans, Dietmar, Klajnert-Maculewicz, Barbara, Janaszewska, Anna, Lazniewska, Joanna, Voit, Brigitte

In this review we highlight the potential for biomedical applications of dendritic glycopolymers based on polyamine scaffolds. The complex interplay of the molecular characteristics of the dendritic architectures and their specific interactions with various (bio)molecules are elucidated with various examples. A special role of the individual sugar units attached to the dendritic scaffolds and their density is identified, which govern ionic and H-bond interactions, and biological targeting, but to a large extent are also responsible for the significantly reduced toxicity of the dendritic glycopolymers compared to their polyamine scaffolds. Thus, the application of dendritic glycopolymers in drug delivery systems for gene transfection but also as therapeutics in neurodegenerative diseases has great promise.

Loading...
Thumbnail Image
Item

Reversible thermosensitive biodegradable polymeric actuators based on confined crystallization

2015, Stroganov, Vladislav, Al-Hussein, Mahmoud, Sommer, Jens-Uwe, Janke, Andreas, Zakharchenko, Svetlana, Ionov, Leonid

We discovered a new and unexpected effect of reversible actuation of ultrathin semicrystalline polymer films. The principle was demonstrated on the example of thin polycaprolactone-gelatin bilayer films. These films are unfolded at room temperature, fold at temperature above polycaprolactone melting point, and unfold again at room temperature. The actuation is based on reversible switching of the structure of the hydrophobic polymer (polycaprolactone) upon melting and crystallization. We hypothesize that the origin of this unexpected behavior is the orientation of polycaprolactone chains parallel to the surface of the film, which is retained even after melting and crystallization of the polymer or the “crystallization memory effect”. In this way, the crystallization generates a directed force, which causes bending of the film. We used this effect for the design of new generation of fully biodegradable thermoresponsive polymeric actuators, which are highly desirable for bionano-technological applications such as reversible encapsulation of cells and design of swimmers.

Loading...
Thumbnail Image
Item

Defect-free Naphthalene Diimide Bithiophene Copolymers with Controlled Molar Mass and High Performance via Direct Arylation Polycondensation

2015, Matsidik, Rukiya, Komber, Hartmut, Luzio, Alessandro, Caironi, Mario, Sommer, Michael

A highly efficient, simple, and environmentally friendly protocol for the synthesis of an alternating naphthalene diimide bithiophene copolymer (PNDIT2) via direct arylation polycondensation (DAP) is presented. High molecular weight (MW) PNDIT2 can be obtained in quantitative yield using aromatic solvents. Most critical is the suppression of two major termination reactions of NDIBr end groups: nucleophilic substitution and solvent end-capping by aromatic solvents via C–H activation. In situ solvent end-capping can be used to control MW by varying monomer concentration, whereby end-capping is efficient and MW is low for low concentration and vice versa. Reducing C–H reactivity of the solvent at optimized conditions further increases MW. Chain perfection of PNDIT2 is demonstrated in detail by NMR spectroscopy, which reveals PNDIT2 chains to be fully linear and alternating. This is further confirmed by investigating the optical and thermal properties as a function of MW, which saturate at Mn ≈ 20 kDa, in agreement with controls made by Stille coupling. Field-effect transistor (FET) electron mobilities μsat up to 3 cm2/(V·s) are measured using off-center spin-coating, with FET devices made from DAP PNDIT2 exhibiting better reproducibility compared to Stille controls.

Loading...
Thumbnail Image
Item

Effects of high energy electrons on the properties of polyethylene / multiwalled carbon nanotubes composites: Comparison of as-grown and oxygen-functionalised MWCNT

2014, Krause, Beate, Pötschke, Petra, Gohs, U.

Polymer modification with high energy electrons (EB) is well established in different applications for many years. It is used for crosslinking, curing, degrading, grafting of polymeric materials and polymerisation of monomers. In contrast to this traditional method, electron induced reactive processing (EIReP) combines the polymer modification with high energy electrons and the melt mixing process. This novel reactive method was used to prepare polymer blends and composites. In this study, both methods were used for the preparation of polyethylene (PE)/ multiwalled carbon nanotubes (MWCNT) composites in the presence of a coupling agent. The influence of MWCNT and type of electron treatment on the gel content, the thermal conductivity, rheological, and electrical properties was investigated whereby as-grown and oxidised MWCNT were used. In the presence of a coupling agent and at an absorbed dose of 40 kGy, the gel content increased from 57 % for the pure PE to 74 % or 88 % by the addition of as-grown (Baytubes® C150P) or oxidised MWCNT, respectively. In comparison to the composites containing the as-grown MWCNTs, the use of the oxidised MWCNTs led to higher melt viscosity and higher storage modulus due to higher yield of filler polymer couplings. The melt viscosity increased due to the addition of MWCNT and crosslinking of PE. The thermal conductivity increased to about 150 % and showed no dependence on the kind of MWCNT and the type of electron treatment. In contrast, the lowest value of electrical volume resistivity was found for the non-irradiated samples and after state of the art electron treatment without any influence of the type of MWCNT. In the case of EIReP, the volume resistivity increased by 2 (as-grown MWCNT) or 3 decades (oxidised MWCNT) depending on the process parameters. © 2014 American Institute of Physics.

Loading...
Thumbnail Image
Item

Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction

2015, Zhu, Chengzhou, Wen, Dan, Leubner, Susanne, Oschatz, Martin, Liu, Wei, Holzschuh, Matthias, Simon, Frank, Kaskel, Stefan, Eychmüller, Alexander

A class of novel nickel cobalt oxide hollow nanosponges were synthesized through a sodium borohydride reduction strategy. Due to their porous and hollow nanostructures, and synergetic effects between their components, the optimized nickel cobalt oxide nanosponges exhibited excellent catalytic activity towards oxygen evolution reaction.

Loading...
Thumbnail Image
Item

In vitro studies of polyhedral oligo silsesquioxanes: Evidence for their low cytotoxicity

2015, Janaszewska, Anna, Gradzinska, Kinga, Marcinkowska, Monika, Klajnert-Maculewicz, Barbara, Stanczyk, Wlodzimierz A.

As scientific literature considers polyhedral oligosilsesquioxanes (POSS) as potential drug delivery systems, it is necessary to check their impact on mammalian cells. Toxicity of octaammonium chloride salt of octaaminopropyl polyhedral oligomeric silsesquioxane (oap-POSS) towards two cell lines: mouse neuroblastoma (N2a) and embryonic mouse hippocampal cells (mHippoE-18) was studied. Experiments consisted of analysis of a cell cycle, cell viability, amount of apoptotic and necrotic cells, and generation of reactive oxygen species (ROS). POSS caused a shift in the cell population from the S and M/G2 phases to the G0/G1 phase. However, the changes affected less than 10% of the cell population and were not accompanied by increased cytotoxicity. POSS did not induce either apoptosis or necrosis and did not generate reactive oxygen species. A cytotoxicity profile of POSS makes it a promising starting material as drug carrier.

Loading...
Thumbnail Image
Item

A hyperbranched dopamine-containing PEG-based polymer for the inhibition of α-synuclein fibrillation

2015, Breydo, Leonid, Newland, Ben, Zhang, Hong, Rosser, Anne, Werner, Carsten, Uversky, Vladimir N., Wang, Wenxin

Aggregation of α-synuclein is believed to play an important role in Parkinson's disease and in other neurodegenerative maladies. Small molecule inhibitors of this process are among the most promising drug candidates for neurodegenerative diseases. Dendrimers have also been studied for anti-fibrillation applications but they can be difficult and expensive to synthetize. Here we show that RAFT polymerization can be used to produce a hyperbranched polyethylene glycol structure via a one-pot reaction. This polymer included a dopamine moiety, a known inhibitor of α-synuclein fibril formation. Dopamine within the polymer structure was capable of aggregation inhibition, although not to the same degree as free dopamine. This result opens up new avenues for the use of controlled radical polymerizations as a means of preparing hyperbranched polymers for anti-fibrillation activity, but shows that the incorporation of functional groups from known small molecules within polymers may alter their biological activity.

Loading...
Thumbnail Image
Item

Poly(propylene imine) dendrimers and amoxicillin as dual-action antibacterial agents

2015, Wrońska, Natalia, Felczak, Aleksandra, Zawadzka, Katarzyna, Poszepczyńska, Martyna, Różalska, Sylwia, Bryszewska, Maria, Appelhans, Dietmar, Lisowska, Katarzyna

Besides acting as antimicrobial compounds, dendrimers can be considered as agents that improve the therapeutic effectiveness of existing antibiotics. In this work we present a new approach to using amoxicillin (AMX) against reference strains of common Gram-negative pathogens, alone and in combination with poly(propylene imine) (PPI) dendrimers, or derivatives thereof, in which 100% of the available hydrogen atoms are substituted with maltose (PPI 100%malG3). The concentrations of dendrimers used remained in the range non-toxic to eukaryotic cells. The results indicate that PPI dendrimers significantly enhance the antibacterial effect of amoxicillin alone, allowing antibiotic doses to be reduced. It is important to reduce doses of amoxicillin because its widespread use in medicine could lead to the development of bacterial resistance and environmental pollution. This is the first report on the combined antibacterial activity of PPI surface-modified maltose dendrimers and amoxicillin.

Loading...
Thumbnail Image
Item

Achieving electrical conductive tracks by laser treatment of non-conductive polypropylene/polycarbonate blends filled with MWCNTs

2014, Liebscher, Marco, Krause, Beate, Pötschke, Petra, Barz, Andrea, Bliedtner, Jens, Möhwald, Michael, Letzsch, Alexander

Electrical non-conductive polymer blends consisting of a polypropylene (PP) matrix and dispersed particles of polycarbonate (PC) were melt compounded with 3 wt.% multiwalled carbon nanotubes (MWCNTs) loading and processed into plates by injection molding. The morphological analysis confirmed the selective localization of the MWCNTs in the PC component. By local irradiation with a CO2 laser beam, depending on the laser conditions, conductive tracks with dimensions of about 2 mm width, 80 to 370 μm depth and line resistances as low as 1.5 kΩ · cm-1 were created on the surface of the non-conductive plates. The factors affecting the line resistance are the PC content, the laser speed and laser power, as well as laser direction with respect to the melt flow direction. After the irradiation an enrichment of MWCNTs in the laser lines was detected indicating that conductive paths were generated by percolation of nanotubes selectively within these lines in otherwise non-conductive plates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.