Search Results

Now showing 1 - 10 of 52
  • Item
    Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability
    (Amsterdam : Elsevier, 2017) Hempel, Sabrina; König, Marcel; Menz, Christoph; Janke, David; Amon, Barbara; Banhazi, Thomas M.; Estellés, Fernando; Amon, Thomas
    The microclimatic conditions in dairy buildings affect animal welfare and gaseous emissions. Measurements are highly variable due to the inhomogeneous distribution of heat and humidity sources (related to farm management) and the turbulent inflow (associated with meteorologic boundary conditions). The selection of the measurement strategy (number and position of the sensors) and the analysis methodology adds to the uncertainty of the applied measurement technique. To assess the suitability of different sensor positions, in situations where monitoring in the direct vicinity of the animals is not possible, we collected long-term data in two naturally ventilated dairy barns in Germany between March 2015 and April 2016 (horizontal and vertical profiles with 10 to 5 min temporal resolution). Uncertainties related to the measurement setup were assessed by comparing the device outputs under lab conditions after the on-farm experiments. We found out that the uncertainty in measurements of relative humidity is of particular importance when assessing heat stress risk and resulting economic losses in terms of temperature-humidity index. Measurements at a height of approximately 3 m–3.5 m turned out to be a good approximation for the microclimatic conditions in the animal occupied zone (including the air volume close to the emission active zone). However, further investigation along this cross-section is required to reduce uncertainties related to the inhomogeneous distribution of humidity. In addition, a regular sound cleaning (and if possible recalibration after few months) of the measurement devices is crucial to reduce the instrumentation uncertainty in long-term monitoring of relative humidity in dairy barns. © 2017 The Authors
  • Item
    Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change
    (Amsterdam [u.a.] : Elsevier, 2017) Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco; Asseng, Senthold; Baranowski, Piotr; Basso, Bruno; Bodin, Per; Buis, Samuel; Cammarano, Davide; Deligios, Paola; Destain, Marie-France; Dumont, Benjamin; Ewert, Frank; Ferrise, Roberto; François, Louis; Gaiser, Thomas; Hlavinka, Petr; Jacquemin, Ingrid; Kersebaum, Kurt Christian; Kollas, Chris; Krzyszczak, Jaromir; Lorite, Ignacio J.; Minet, Julien; Minguez, M. Ines; Montesino, Manuel; Moriondo, Marco; Müller, Christoph; Nendel, Claas; Öztürk, Isik; Perego, Alessia; Rodríguez, Alfredo; Ruane, Alex C.; Ruget, Françoise; Sanna, Mattia; Semenov, Mikhail A.; Slawinski, Cezary; Stratonovitch, Pierre; Supit, Iwan; Waha, Katharina; Wang, Enli; Wu, Lianhai; Zhao, Zhigan; Rötter, Reimund P.
    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (−2 to +9°C) and precipitation (−50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
  • Item
    Livelihood and climate trade-offs in Kenyan peri-urban vegetable production
    (Amsterdam [u.a.] : Elsevier, 2017) Kurgat, Barnabas K.; Stöber, Silke; Mwonga, Samuel; Lotze-Campen, Hermann; Rosenstock, Todd S.
    Trade-offs between livelihood and environmental outcomes due to agricultural intensification in sub-Saharan Africa are uncertain. The present study measured yield, economic performance and nitrous oxide (N2O) emissions in African indigenous vegetable (AIV) production to investigate the optimal nutrient management strategies. In order to achieve this, an on-farm experiment with four treatments – (1) 40 kg N/ha diammonium phosphate (DAP), (2) 10 t/ha cattle manure, (3) 20 kg N/ha DAP and 5 t/ha cattle manure and (4) a no-N input control – was performed for two seasons. Yields and N2O emissions were directly measured with subsampling and static chambers/gas chromatography, respectively. Economic outcomes were estimated from semi-structured interviews (N = 12). Trade-offs were quantified by calculating N2O emissions intensity (N2OI) and N2O emissions economic intensity (N2OEI). The results indicate that, DAP alone resulted at least 14% greater yields, gross margin and returns to labour in absolute terms but had the highest emissions (p = 0.003). Productivity-climate trade-offs, expressed as N2OI, were statistically similar for DAP and mixed treatments. However, N2OEI was minimized under mixed management (p = 0.0004) while maintaining productivity and gross margins. We therefore conclude that soil fertility management strategies that mix inorganic and organic source present a pathway to sustainable intensification in AIV production. Future studies of GHG emissions in crop production need to consider not only productivity but economic performance when considering trade-offs.
  • Item
    CHASE-PL—Future Hydrology Data Set: Projections of Water Balance and Streamflow for the Vistula and Odra Basins, Poland
    (Basel : MDPI, 2017) Piniewski, Mikołaj; Szcześniak, Mateusz; Kardel, Ignacy
    There is considerable concern that the water resources of Central and Eastern Europe region can be adversely affected by climate change. Projections of future water balance and streamflow conditions can be obtained by forcing hydrological models with the output from climate models. In this study, we employed the SWAT hydrological model driven with an ensemble of nine bias-corrected EURO-CORDEX climate simulations to generate future hydrological projections for the Vistula and Odra basins in two future horizons (2024–2050 and 2074–2100) under two Representative Concentration Pathways (RCPs). The data set consists of three parts: (1) model inputs; (2) raw model outputs; (3) aggregated model outputs. The first one allows the users to reproduce the outputs or to create the new ones. The second one contains the simulated time series of 10 variables simulated by SWAT: precipitation, snow melt, potential evapotranspiration, actual evapotranspiration, soil water content, percolation, surface runoff, baseflow, water yield and streamflow. The third one consists of the multi-model ensemble statistics of the relative changes in mean seasonal and annual variables developed in a GIS format. The data set should be of interest of climate impact scientists, water managers and water-sector policy makers. In any case, it should be noted that projections included in this data set are associated with high uncertainties explained in this data descriptor paper.
  • Item
    Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators
    (Woodbury, NY : American Institute of Physics, 2017) Papadopoulos, Lia; Kim, Jason Z.; Kurths, Jürgen; Bassett, Danielle S.
    Synchronization of non-identical oscillators coupled through complex networks is an important example of collective behavior, and it is interesting to ask how the structural organization of network interactions influences this process. Several studies have explored and uncovered optimal topologies for synchronization by making purposeful alterations to a network. On the other hand, the connectivity patterns of many natural systems are often not static, but are rather modulated over time according to their dynamics. However, this co-evolution and the extent to which the dynamics of the individual units can shape the organization of the network itself are less well understood. Here, we study initially randomly connected but locally adaptive networks of Kuramoto oscillators. In particular, the system employs a co-evolutionary rewiring strategy that depends only on the instantaneous, pairwise phase differences of neighboring oscillators, and that conserves the total number of edges, allowing the effects of local reorganization to be isolated. We find that a simple rule-which preserves connections between more outof- phase oscillators while rewiring connections between more in-phase oscillators-can cause initially disordered networks to organize into more structured topologies that support enhanced synchronization dynamics. We examine how this process unfolds over time, finding a dependence on the intrinsic frequencies of the oscillators, the global coupling, and the network density, in terms of how the adaptive mechanism reorganizes the network and influences the dynamics. Importantly, for large enough coupling and after sufficient adaptation, the resulting networks exhibit interesting characteristics, including degree-frequency and frequency-neighbor frequency correlations. These properties have previously been associated with optimal synchronization or explosive transitions in which the networks were constructed using global information. On the contrary, by considering a time-dependent interplay between structure and dynamics, this work offers a mechanism through which emergent phenomena and organization can arise in complex systems utilizing local rules.
  • Item
    Regional projections of temperature and precipitation changes: Robustness and uncertainty aspects
    (Stuttgart : Gebrueder Borntraeger Verlagsbuchhandlung, 2017) Piniewski, M.; Mezghani, A.; Szczésniak, M.; Kundzewicz, Z.W.
    This study presents the analysis of bias-corrected projections of changes in temperature and precipitation in the Vistula and Odra basins, covering approximately 90% of the Polish territory and small parts of neighbouring countries in Central and Eastern Europe. The ensemble of climate projections consists of nine regional climate model simulations from the EURO-CORDEX ensemble for two future periods 2021-2050 and 2071-2100, assuming two representative concentration pathways (RCPs) 4.5 and 8.5. The robustness is measured by the ensemble models' agreement on significant changes.We found a robust increase in the annual mean of daily minimum and maximum temperature, by 1-1.4 °C in the near future and by 1.9-3.8 °C in the far future (areal-means of the ensemble mean values). Higher increases are consistently associated with minimum temperature and the gradient of change goes from SWto NE regions. Seasonal projections of both temperature variables reflect lower robustness and suggest a higher future increase in winter temperatures than in other seasons, notably in the far future under RCP 8.5 (by more than 1 °C). However, changes in annual means of precipitation are uncertain and not robust in any of the analysed cases, even though the climate models agree well on the increase. This increase is intensified with rising global temperatures and varies from 5.5% in the near future under RCP 4.5 to 15.2%in the far future under RCP 8.5. Spatial variability is substantial, although quite variable between individual climate model simulations. Although seasonal means of precipitation are projected to considerably increase in all four combinations of RCPs and projection horizons for winter and spring, the high model spread reduces considerably the robustness, especially for the far future. In contrast, the ensemble members agree well that overall, the summer and autumn (with exception of the far future under RCP 8.5) precipitation will not undergo statistically significant changes.
  • Item
    Sequential decision problems, dependent types and generic solutions
    (Braunschweig : Department of Theoretical Computer Science, Technical University of Braunschweig, 2017) Botta, N.; Jansson, P.; Ionescu, C.; Christiansen, D.R.; Brady, E.
    We present a computer-checked generic implementation for solving finite-horizon sequential decision problems. This is a wide class of problems, including inter-temporal optimizations, knapsack, optimal bracketing, scheduling, etc. The implementation can handle time-step dependent control and state spaces, and monadic representations of uncertainty (such as stochastic, non-deterministic, fuzzy, or combinations thereof). This level of genericity is achievable in a programming language with dependent types (we have used both Idris and Agda). Dependent types are also the means that allow us to obtain a formalization and computer-checked proof of the central component of our implementation: Bellman’s principle of optimality and the associated backwards induction algorithm. The formalization clarifies certain aspects of backwards induction and, by making explicit notions such as viability and reachability, can serve as a starting point for a theory of controllability of monadic dynamical systems, commonly encountered in, e.g., climate impact research.
  • Item
    The LEGATO cross-disciplinary integrated ecosystem service research framework: an example of integrating research results from the analysis of global change impacts and the social, cultural and economic system dynamics of irrigated rice production
    (Heidelberg : Springer Verlag, 2017) Spangenberg, J.H.; Beaurepaire, A.L.; Bergmeier, E.; Burkhard, B.; van Chien, H.; Cuong, L.Q.; Görg, C.; Grescho, V.; Hai, L.H.; Heong, K.L.; Horgan, F.G.; Hotes, S.; Klotzbücher, A.; Klotzbücher, T.; Kühn, I.; Langerwisch, F.; Marion, G.; Moritz, R.F.A.; Nguyen, Q.A.; Ott, J.; Sann, C.; Sattler, C.; Schädler, M.; Schmidt, A.; Tekken, V.; Thanh, T.D.; Thonicke, K.; Türke, M.; Václavík, T.; Vetterlein, D.; Westphal, C.; Wiemers, M.; Settele, J.
    In a cross-disciplinary project (LEGATO) combining inter- and transdisciplinary methods, we quantify the dependency of rice-dominated socio-ecological systems on ecosystem functions (ESF) and the ecosystem services (ESS) the integrated system provides. In the collaboration of a large team including geo- and bioscientists, economists, political and cultural scientists, the mutual influences of the biological, climate and soil conditions of the agricultural area and its surrounding natural landscape have been analysed. One focus was on sociocultural and economic backgrounds, another on local as well as regional land use intensity and biodiversity, and the potential impacts of future climate and land use change. LEGATO analysed characteristic elements of three service strands defined by the Millennium Ecosystem Assessment (MA): (a) provisioning services: nutrient cycling and crop production; (b) regulating services: biocontrol and pollination; and (c) cultural services: cultural identity and aesthetics. However, in line with much of the current ESS literature, what the MA called supporting services is treated as ESF within LEGATO. As a core output, LEGATO developed generally applicable principles of ecological engineering (EE), suitable for application in the context of future climate and land use change. EE is an emerging discipline, concerned with the design, monitoring and construction of ecosystems and aims at developing strategies to optimise ecosystem services through exploiting natural regulation mechanisms instead of suppressing them. Along these lines LEGATO also aims to create the knowledge base for decision-making for sustainable land management and livelihoods, including the provision of the corresponding governance and management strategies, technologies and system solutions.
  • Item
    Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks
    (London : Nature Publishing Group, 2017) Zemp, D.C.; Schleussner, C.-F.; Barbosa, H.M.J.; Hirota, M.; Montade, V.; Sampaio, G.; Staal, A.; Wang-Erlandsson, L.; Rammig, A.
    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10-13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest.
  • Item
    Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century
    (London : Nature Publishing Group, 2017) Veldkamp, T.I.E.; Wada, Y.; Aerts, J.C.J.H.; Döll, P.; Gosling, S.N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y.; Satoh, Y.; Kim, H.; Ward, P.J.
    Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971-2010. Here we show that HI drastically change the critical dimensions of water scarcity, aggravating water scarcity for 8.8% (7.4-16.5%) of the global population but alleviating it for another 8.3% (6.4-15.8%). Positive impacts of HI mostly occur upstream, whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A thorough consideration of the spatially and temporally varying interactions among HI components and of uncertainties is therefore crucial for the success of water scarcity adaptation by HI.