Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios

2018, Kim, HyeJin, Rosa, Isabel M. D., Alkemade, Rob, Leadley, Paul, Hurtt, George, Popp, Alexander, van Vuuren, Detlef P., Anthoni, Peter, Arneth, Almut, Baisero, Daniele, Caton, Emma, Chaplin-Kramer, Rebecca, Chini, Louise, De Palma, Adriana, Di Fulvio, Fulvio, Di Marco, Moreno, Espinoza, Felipe, Ferrier, Simon, Fujimori, Shinichiro, Gonzalez, Ricardo E., Gueguen, Maya, Guerra, Carlos, Harfoot, Mike, Harwood, Thomas D., Hasegawa, Tomoko, Haverd, Vanessa, Havlík, Petr, Hellweg, Stefanie, Hill, Samantha L. L., Hirata, Akiko, Hoskins, Andrew J., Janse, Jan H., Jetz, Walter, Johnson, Justin A., Krause, Andreas, Leclère, David, Martins, Ines S., Matsui, Tetsuya, Merow, Cory, Obersteiner, Michael, Ohashi, Haruka, Poulter, Benjamin, Purvis, Andy, Quesada, Benjamin, Rondinini, Carlo, Schipper, Aafke M., Sharp, Richard, Takahashi, Kiyoshi, Thuiller, Wilfried, Titeux, Nicolas, Visconti, Piero, Ware, Christopher, Wolf, Florian, Pereira, Henrique M.

To support the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the IPBES Expert Group on Scenarios and Models is carrying out an intercomparison of biodiversity and ecosystem services models using harmonized scenarios (BES-SIM). The goals of BES-SIM are (1) to project the global impacts of land-use and climate change on biodiversity and ecosystem services (i.e., nature's contributions to people) over the coming decades, compared to the 20th century, using a set of common metrics at multiple scales, and (2) to identify model uncertainties and research gaps through the comparisons of projected biodiversity and ecosystem services across models. BES-SIM uses three scenarios combining specific Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs)-SSP1xRCP2.6, SSP3xRCP6.0, SSP5xRCP8.6-to explore a wide range of land-use change and climate change futures. This paper describes the rationale for scenario selection, the process of harmonizing input data for land use, based on the second phase of the Land Use Harmonization Project (LUH2), and climate, the biodiversity and ecosystem services models used, the core simulations carried out, the harmonization of the model output metrics, and the treatment of uncertainty. The results of this collaborative modeling project will support the ongoing global assessment of IPBES, strengthen ties between IPBES and the Intergovernmental Panel on Climate Change (IPCC) scenarios and modeling processes, advise the Convention on Biological Diversity (CBD) on its development of a post-2020 strategic plans and conservation goals, and inform the development of a new generation of nature-centred scenarios.

Loading...
Thumbnail Image
Item

The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): Rationale and experimental protocol for CMIP6

2018, Keller, D.P., Lenton, A., Scott, V., Vaughan, N.E., Bauer, N., Ji, D., Jones, C.D., Kravitz, B., Muri, H., Zickfeld, K.

The recent IPCC reports state that continued anthropogenic greenhouse gas emissions are changing the climate, threatening severe, pervasive and irreversible impacts. Slow progress in emissions reduction to mitigate climate change is resulting in increased attention to what is called geoengineering, climate engineering, or climate intervention - deliberate interventions to counter climate change that seek to either modify the Earth's radiation budget or remove greenhouse gases such as CO2 from the atmosphere. When focused on CO2, the latter of these categories is called carbon dioxide removal (CDR). Future emission scenarios that stay well below 2gC, and all emission scenarios that do not exceed 1.5gC warming by the year 2100, require some form of CDR. At present, there is little consensus on the climate impacts and atmospheric CO2 reduction efficacy of the different types of proposed CDR. To address this need, the Carbon Dioxide Removal Model Intercomparison Project (or CDRMIP) was initiated. This project brings together models of the Earth system in a common framework to explore the potential, impacts, and challenges of CDR. Here, we describe the first set of CDRMIP experiments, which are formally part of the 6th Coupled Model Intercomparison Project (CMIP6). These experiments are designed to address questions concerning CDR-induced climate reversibility, the response of the Earth system to direct atmospheric CO2 removal (direct air capture and storage), and the CDR potential and impacts of afforestation and reforestation, as well as ocean alkalinization.

Loading...
Thumbnail Image
Item

Early-warning signals for Dansgaard-Oeschger events in a high-resolution ice core record

2018, Boers, N.

The Dansgaard-Oeschger (DO) events, as observed in oxygen isotope ratios from the North Greenland Ice Core Project (NGRIP) record, are an outstanding example of past abrupt climate transitions. Their physical cause remains debated, and previous research indicated that they are not preceded by classical early-warning signals (EWS). Subsequent research hypothesized that the DO events are caused by bifurcations of physical mechanisms operating at decadal timescales, and proposed to search for EWS in the high-frequency fluctuation levels. Here, a time series with 5-year resolution is obtained from the raw NGRIP record, and significant numbers of EWS in terms of variance and autocorrelation increases are revealed in the decadal-scale variability. Wavelet analysis indicates that the EWS are most pronounced in the 10-50-year periodicity band, confirming the above hypothesis. The DO events are hence neither directly noise-induced nor purely externally forced, which provides valuable constraints regarding potential physical causes.

Loading...
Thumbnail Image
Item

LPJmL4 - A dynamic global vegetation model with managed land - Part 1: Model description

2018, Schaphoff, S., Von Bloh, W., Rammig, A., Thonicke, K., Biemans, H., Forkel, M., Gerten, D., Heinke, J., Jägermeyr, J., Knauer, J., Langerwisch, F., Lucht, W., Müller, C., Rolinski, S., Waha, K.

This paper provides a comprehensive description of the newest version of the Dynamic Global Vegetation Model with managed Land, LPJmL4. This model simulates - internally consistently - the growth and productivity of both natural and agricultural vegetation as coherently linked through their water, carbon, and energy fluxes. These features render LPJmL4 suitable for assessing a broad range of feedbacks within and impacts upon the terrestrial biosphere as increasingly shaped by human activities such as climate change and land use change. Here we describe the core model structure, including recently developed modules now unified in LPJmL4. Thereby, we also review LPJmL model developments and evaluations in the field of permafrost, human and ecological water demand, and improved representation of crop types. We summarize and discuss LPJmL model applications dealing with the impacts of historical and future environmental change on the terrestrial biosphere at regional and global scale and provide a comprehensive overview of LPJmL publications since the first model description in 2007. To demonstrate the main features of the LPJmL4 model, we display reference simulation results for key processes such as the current global distribution of natural and managed ecosystems, their productivities, and associated water fluxes. A thorough evaluation of the model is provided in a companion paper. By making the model source code freely available at https://gitlab.pik-potsdam.de/lpjml/LPJmL we hope to stimulate the application and further development of LPJmL4 across scientific communities in support of major activities such as the IPCC and SDG process.

Loading...
Thumbnail Image
Item

Thinning Can Reduce Losses in Carbon Use Efficiency and Carbon Stocks in Managed Forests Under Warmer Climate

2018, Collalti, Alessio, Trotta, Carlo, Keenan, Trevor F., Ibrom, Andreas, Bond‐Lamberty, Ben, Grote, Ruediger, Vicca, Sara, Reyer, Christopher P. O., Migliavacca, Mirco, Veroustraete, Frank, Anav, Alessandro, Campioli, Matteo, Scoccimarro, Enrico, Šigut, Ladislav, Grieco, Elisa, Cescatti, Alessandro, Matteucci, Giorgio

Forest carbon use efficiency (CUE, the ratio of net to gross primary productivity) represents the fraction of photosynthesis that is not used for plant respiration. Although important, it is often neglected in climate change impact analyses. Here we assess the potential impact of thinning on projected carbon cycle dynamics and implications for forest CUE and its components (i.e., gross and net primary productivity and plant respiration), as well as on forest biomass production. Using a detailed process-based forest ecosystem model forced by climate outputs of five Earth System Models under four representative climate scenarios, we investigate the sensitivity of the projected future changes in the autotrophic carbon budget of three representative European forests. We focus on changes in CUE and carbon stocks as a result of warming, rising atmospheric CO2 concentration, and forest thinning. Results show that autotrophic carbon sequestration decreases with forest development, and the decrease is faster with warming and in unthinned forests. This suggests that the combined impacts of climate change and changing CO2 concentrations lead the forests to grow faster, mature earlier, and also die younger. In addition, we show that under future climate conditions, forest thinning could mitigate the decrease in CUE, increase carbon allocation into more recalcitrant woody pools, and reduce physiological-climate-induced mortality risks. Altogether, our results show that thinning can improve the efficacy of forest-based mitigation strategies and should be carefully considered within a portfolio of mitigation options.

Loading...
Thumbnail Image
Item

Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990

2018, Pińskwar, I., Choryński, A., Graczyk, D., Kundzewicz, Z.W.

Several episodes of extreme precipitation excess and extreme precipitation deficit, with considerable economic and social impacts, have occurred in Europe and in Poland in the last decades. However, the changes of related indices exhibit complex variability. This paper analyses changes in indices related to observed abundance and deficit of precipitated water in Poland. Among studied indices are maximum seasonal 24-h precipitation for the winter half-year (Oct.–March) and the summer half-year (Apr.–Sept.), maximum 5-day precipitation, maximum monthly precipitation and number of days with intense or very intense precipitation (respectively, in excess of 10 mm or 20 mm per day). Also, the warm-seasonal maximum number of consecutive dry days (longest period with daily precipitation below 1 mm) was examined. Analysis of precipitation extremes showed that daily maximum precipitation for the summer half-year increased for many stations, and increases during the summer half-year are more numerous than those in the winter half-year. Also, analysis of 5-day and monthly precipitation sums show increases for many stations. Number of days with intense precipitation increases especially in the north-western part of Poland. The number of consecutive dry days is getting higher for many stations in the summer half-year. Comparison of these two periods: colder 1961–1990 and warmer 1991–2015, revealed that during last 25 years most of statistical indices, such as 25th and 75th percentiles, median, mean and maximum are higher. However, many changes discussed in this paper are weak and statistically insignificant. The findings reported in this paper challenge results based on earlier data that do not include 2007–2015.