Search Results

Now showing 1 - 10 of 66
  • Item
    Evaluating the potential of dietary crude protein manipulation in reducing ammonia emissions from cattle and pig manure: A meta-analysis
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2017-11-22) Sajeev, Erangu Purath Mohankumar; Amon, Barbara; Ammon, Christian; Zollitsch, Werner; Winiwarter, Wilfried
    Dietary manipulation of animal diets by reducing crude protein (CP) intake is a strategic NH3 abatement option as it reduces the overall nitrogen input at the very beginning of the manure management chain. This study presents a comprehensive meta-analysis of scientific literature on NH3 reductions following a reduction of CP in cattle and pig diets. Results indicate higher mean NH3 reductions of 17 ± 6% per %-point CP reduction for cattle as compared to 11 ± 6% for pigs. Variability in NH3 emission reduction estimates reported for different manure management stages and pig categories did not indicate a significant influence. Statistically significant relationships exist between CP reduction, NH3 emissions and total ammoniacal nitrogen content in manure for both pigs and cattle, with cattle revealing higher NH3 reductions and a clearer trend in relationships. This is attributed to the greater attention given to feed optimization in pigs relative to cattle and also due to the specific physiology of ruminants to efficiently recycle nitrogen in situations of low protein intake. The higher NH3 reductions in cattle highlights the opportunity to extend concepts of feed optimization from pigs and poultry to cattle production systems to further reduce NH3 emissions from livestock manure. The results presented help to accurately quantify the effects of NH3 abatement following reduced CP levels in animal diets distinguishing between animal types and other physiological factors. This is useful in the development of emission factors associated with reduced CP as an NH3 abatement option. © 2017, The Author(s).
  • Item
    Reducing conditions favor magnetosome production in magnetospirillum magneticum AMB-1
    (Lausanne : Frontiers Media, 2019) Olszewska-Widdrat, Agata; Schiro, Gabriele; Reichel, Victoria E.; Faivre, Damien
    Magnetotactic bacteria (MTB) are a heterogeneous group of Gram-negative prokaryotes, which all produce special magnetic organelles called magnetosomes. The magnetosome consists of a magnetic nanoparticle, either magnetite (Fe3O4) or greigite (Fe3S4), embedded in a membrane, which renders the systems colloidaly stable, a desirable property for biotechnological applications. Although these bacteria are able to regulate the formation of magnetosomes through a biologically-controlled mechanism, the environment in general and the physico-chemical conditions surrounding the cells in particular also influence biomineralization. This work thus aims at understanding how such external conditions, in particular the extracellular oxidation reduction potential, influence magnetite formation in the strain Magnetospirillum magneticum AMB-1. Controlled cultivation of the microorganisms was performed at different redox potential in a bioreactor and the formation of magnetosomes was assessed by microscopic and spectroscopic techniques. Our results show that the formation of magnetosomes is inhibited at the highest potential tested (0 mV), whereas biomineralization is facilitated under reduced conditions (-500 mV). This result improves the understanding of the biomineralization process in MTB and provides useful information in sight of a large scale production of magnetosomes for different applications. © 2019 Olszewska-Widdrat, Schiro, Reichel and Faivre.
  • Item
    Synergistic use of peat and charred material in growing media–an option to reduce the pressure on peatlands?
    (Vilnius : Technika, 2017) Kern, Jürgen; Tammeorg, Priit; Shanskiy, Merrit; Sakrabani, Ruben; Knicker, Heike; Kammann, Claudia; Tuhkanen, Eeva-Maria; Smidt, Geerd; Prasad, Munoo; Tiilikkala, Kari; Sohi, Saran; Gascó, Gabriel; Steiner, Christoph; Glaser, Bruno
    Peat is used as a high quality substrate for growing media in horticulture. However, unsustainable peat extraction damages peatland ecosystems, which disappeared to a large extent in Central and South Europe. Furthermore, disturbed peatlands are becoming a source of greenhouse gases due to drainage and excavation. This study is the result of a workshop within the EU COST Action TD1107 (Biochar as option for sustainable resource management), held in Tartu (Estonia) in 2015. The view of stakeholders were consulted on new biochar-based growing media and to what extent peat may be replaced in growing media by new compounds like carbonaceous materials from thermochemical conversion. First positive results from laboratory and greenhouse experiments have been reported with biochar content in growing media ranging up to 50%. Various companies have already started to use biochar as an additive in their growing media formulations. Biochar might play a more important role in replacing peat in growing media, when biochar is available, meets the quality requirements, and their use is economically feasible. © 2017 The Author(s) Published by VGTU Press and Informa UK Limited, [trading as Taylor & Francis Group].
  • Item
    Sensor-based detection of the severity of hyperkeratosis in the teats of dairy cows
    (Basel : MDPI AG, 2018) Demba, S.; Hoffmann, G.; Ammon, C.; Rose-Meierhöfer, S.
    The aim of this study was to evaluate whether the severity of hyperkeratosis (HK) in the teats of dairy cows can be assessed by a dielectric measurement. The study focused on surveying the occurrence of hyperkeratosis in a total of 241 teats of lactating dairy cows. A scoring system consisting of four categories was used to macroscopically assess the severity of HK. Additionally, the dielectric constant (DC) of all teats with milkability was measured in a double iteration with the MoistureMeterD (Delfin Technologies, Kuopio, Finland) on four different days. The Spearman rank correlation coefficient revealed a negative correlation between the DC and HK score (rs = −0.55 to −0.36). The results of the regression analysis showed that the DC values differed significantly between healthy teat ends (≤2) and teat ends with HK (≥3). Thus, the non-invasive measurement of DC provides a promising method of objectively assessing the occurrence and severity of HK.
  • Item
    Prediction of the biogas production using GA and ACO input features selection method for ANN model
    (Amsterdam [u.a.] : Elsevier, 2019) Beltramo, Tanja; Klocke, Michael; Hitzmann, Bernd
    This paper presents a fast and reliable approach to analyze the biogas production process with respect to the biogas production rate. The experimental data used for the developed models included 15 process variables measured at an agricultural biogas plant in Germany. In this context, the concentration of volatile fatty acids, total solids, volatile solids acid detergent fibre, acid detergent lignin, neutral detergent fibre, ammonium nitrogen, hydraulic retention time, and organic loading rate were used. Artificial neural networks (ANN) were established to predict the biogas production rate. An ant colony optimization and genetic algorithms were implemented to perform the variable selection. They identified the significant process variables, reduced the model dimension and improved the prediction capacity of the ANN models. The best prediction of the biogas production rate was obtained with an error of prediction of 6.24% and a coefficient of determination of R2 = 0.9.
  • Item
    Complete Genome Sequence of a New Ruminococcaceae Bacterium Isolated from Anaerobic Biomass Hydrolysis
    (Washington, DC : American Soc. for Microbiology, 2018) Hahnke, Sarah; Abendroth, Christian; Langer, Thomas; Codoñer, Francisco M.; Ramm, Patrice; Porcar, Manuel; Luschnig, Olaf; Klocke, Michael
    A new Ruminococcaceae bacterium, strain HV4-5-B5C, participating in the anaerobic digestion of grass, was isolated from a mesophilic two-stage laboratoryscale leach bed biogas system. The draft annotated genome sequence presented in this study and 16S rRNA gene sequence analysis indicated the affiliation of HV4-5- B5C with the family Ruminococcaceae outside recently described genera. © 2018 Hahnke et al.
  • Item
    Representativeness of European biochar research: part II–pot and laboratory studies
    (Vilnius : Technika, 2017) Sakrabani, Ruben; Kern, Jürgen; Mankasingh, Utra; Zavalloni, Costanza; Zanchettin, Giulia; Bastos, Ana Catarina; Tammeorg, Priit; Jeffery, Simon; Glaser, Bruno; Verheijen, Frank G. A.
    Biochar research is extensive and there are many pot and laboratory studies carried out in Europe to investigate the mechanistic understanding that govern its impact on soil processes. A survey was conducted in order to find out how representative these studies under controlled experimental conditions are of actual environmental conditions in Europe and biomass availability and conversion technologies. The survey consisted of various key questions related to types of soil and biochar used, experimental conditions and effects of biochar additions on soil chemical, biological and physical properties. This representativeness study showed that soil texture and soil organic carbon contents used by researchers are well reflected in the current biochar research in Europe (through comparison with published literature), but less so for soil pH and soil type. This study provides scope for future work to complement existing research findings, avoiding unnecessary repetitions and highlighting existing research gaps. © 2017 The Author(s) Published by VGTU Press and Informa UK Limited, [trading as Taylor & Francis Group].
  • Item
    Monitoring Agronomic Parameters of Winter Wheat Crops with Low-Cost UAV Imagery
    (Basel : MDPI, 2016) Schirrmann, Michael; Giebel, Antje; Gleiniger, Franziska; Pflanz, Michael; Lentschke, Jan; Dammer, Karl-Heinz
    Monitoring the dynamics in wheat crops requires near-term observations with high spatial resolution due to the complex factors influencing wheat growth variability. We studied the prospects for monitoring the biophysical parameters and nitrogen status in wheat crops with low-cost imagery acquired from unmanned aerial vehicles (UAV) over an 11 ha field. Flight missions were conducted at approximately 50 m in altitude with a commercial copter and camera system—three missions were performed between booting and maturing of the wheat plants and one mission after tillage. Ultra-high resolution orthoimages of 1.2 cm·px−1 and surface models were generated for each mission from the standard red, green and blue (RGB) aerial images. The image variables were extracted from image tone and surface models, e.g., RGB ratios, crop coverage and plant height. During each mission, 20 plots within the wheat canopy with 1 × 1 m2 sample support were selected in the field, and the leaf area index, plant height, fresh and dry biomass and nitrogen concentrations were measured. From the generated UAV imagery, we were able to follow the changes in early senescence at the individual plant level in the wheat crops. Changes in the pattern of the wheat canopy varied drastically from one mission to the next, which supported the need for instantaneous observations, as delivered by UAV imagery. The correlations between the biophysical parameters and image variables were highly significant during each mission, and the regression models calculated with the principal components of the image variables yielded R2 values between 0.70 and 0.97. In contrast, the models of the nitrogen concentrations yielded low R2 values with the best model obtained at flowering (R2 = 0.65). The nitrogen nutrition index was calculated with an accuracy of 0.10 to 0.11 NNI for each mission. For all models, information about the surface models and image tone was important. We conclude that low-cost RGB UAV imagery will strongly aid farmers in observing biophysical characteristics, but it is limited for observing the nitrogen status within wheat crops.
  • Item
    Methane prediction based on individual or groups of milk fatty acids for dairy cows fed rations with or without linseed
    (New York, NY [u.a.] : Elsevier, 2019) Engelke, Stefanie W.; Daş, Gürbüz; Derno, Michael; Tuchscherer, Armin; Wimmers, Klaus; Rychlik, Michael; Kienberger, Hermine; Berg, Werner; Kuhla, Björn; Metges, Cornelia C.
    Milk fatty acids (MFA) are a proxy for the prediction of CH4 emission from cows, and prediction differs with diet. Our objectives were (1) to compare the effect of diets on the relation between MFA profile and measured CH4 production, (2) to predict CH4 production based on 6 data sets differing in the number and type of MFA, and (3) to test whether additional inclusion of energy-corrected milk (ECM) yield or dry matter intake (DMI) as explanatory variables improves predictions. Twenty dairy cows were used. Four diets were used based on corn silage (CS) or grass silage (GS) without (L0) or with linseed (LS) supplementation. Ten cows were fed CS-L0 and CS-LS and the other 10 cows were fed GS-L0 and GS-LS in random order. In feeding wk 5 of each diet, CH4 production (L/d) was measured in respiration chambers for 48 h and milk was analyzed for MFA concentrations by gas chromatography. Specific CH4 prediction equations were obtained for L0-, LS-, GS-, and CS-based diets and for all 4 diets collectively and validated by an internal cross-validation. Models were developed containing either 43 identified MFA or a reduced set of 7 groups of biochemically related MFA plus C16:0 and C18:0. The CS and LS diets reduced CH4 production compared with GS and L0 diets, respectively. Methane yield (L/kg of DMI) reduction by LS was higher with CS than GS diets. The concentrations of C18:1 trans and n-3 MFA differed among GS and CS diets. The LS diets resulted in a higher proportion of unsaturated MFA at the expense of saturated MFA. When using the data set of 43 individual MFA to predict CH4 production (L/d), the cross-validation coefficient of determination (R2 CV) ranged from 0.47 to 0.92. When using groups of MFA variables, the R2 CV ranged from 0.31 to 0.84. The fit parameters of the latter models were improved by inclusion of ECM or DMI, but not when added to the data set of 43 MFA for all diets pooled. Models based on GS diets always had a lower prediction potential (R2 CV = 0.31 to 0.71) compared with data from CS diets (R2 CV = 0.56 to 0.92). Models based on LS diets produced lower prediction with data sets with reduced MFA variables (R2 CV = 0.62 to 0.68) compared with L0 diets (R2 CV = 0.67 to 0.80). The MFA C18:1 cis-9 and C24:0 and the monounsaturated FA occurred most often in models. In conclusion, models with a reduced number of MFA variables and ECM or DMI are suitable for CH4 prediction, and CH4 prediction equations based on diets containing linseed resulted in lower prediction accuracy. © 2019 American Dairy Science Association
  • Item
    N 2 O emissions and NO 3 − leaching from two contrasting regions in Austria and influence of soil, crops and climate: a modelling approach
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Kasper, M.; Foldal, C.; Kitzler, B.; Haas, E.; Strauss, P.; Eder, A.; Zechmeister-Boltenstern, S.; Amon, B.
    National emission inventories for UN FCCC reporting estimate regional soil nitrous oxide (N 2 O) fluxes by considering the amount of N input as the only influencing factor for N 2 O emissions. Our aim was to deepen the understanding of N 2 O fluxes from agricultural soils, including region specific soil and climate properties into the estimation of emission to find targeted mitigation measures for the reduction of nitrogen losses and GHG emissions. Within this project, N 2 O emissions and nitrate (NO 3 − ) leaching were modelled under spatially distinct environmental conditions in two agricultural regions in Austria taking into account region specific soil and climatic properties, management practices and crop rotations. The LandscapeDNDC ecosystem model was used to calculate N 2 O emissions and NO 3 − leaching reflecting different types of vegetation, management operations and crop rotations. In addition, N input and N fluxes were assessed and N 2 O emissions were calculated. This approach allowed identifying hot spots of N 2 O emissions. Results show that certain combinations of soil type, weather conditions, crop and management can lead to high emissions. Mean values ranged from 0.15 to 1.29 kg N 2 O–N ha −1  year −1 (Marchfeld) and 0.26 to 0.52 kg N 2 O–N ha −1  year −1 (Grieskirchen). Nitrate leaching, which strongly dominated N-losses, often reacted opposite to N 2 O emissions. Larger quantities of NO 3 − were lost during years of higher precipitation, especially if winter barley was cultivated on sandy soils. Taking into account the detected hot spots of N 2 O emissions and NO 3 − leaching most efficient measures can be addressed to mitigate environmental impacts while maximising crop production. © 2018, The Author(s).