Search Results

Now showing 1 - 10 of 26
  • Item
    Colloidal Self-Assembly Concepts for Plasmonic Metasurfaces
    (Weinheim : Wiley-VCH, 2019) Mayer, Martin; Schnepf, Max J.; König, Tobias A.F.; Fery, Andreas
    Metallic nanostructures exhibit strong interactions with electromagnetic radiation, known as the localized surface plasmon resonance. In recent years, there is significant interest and growth in the area of coupled metallic nanostructures. In such assemblies, short- and long-range coupling effects can be tailored and emergent properties, e.g., metamaterial effects, can be realized. The term “plasmonic metasurfaces” is used for this novel class of assemblies deposited on planar surfaces. Herein, the focus is on plasmonic metasurfaces formed from colloidal particles. These are formed by self-assembly and can meet the demands of low-cost manufacturing of large-area, flexible, and ultrathin devices. The advances in high optical quality of the colloidal building blocks and methods for controlling their self-assembly on surfaces will lead to novel functional devices for dynamic light modulators, pulse sharpening, subwavelength imaging, sensing, and quantum devices. This progress report focuses on predicting optical properties of single colloidal building blocks and their assemblies, wet-chemical synthesis, and directed self-assembly of colloidal particles. The report concludes with a discussion of the perspectives toward expanding the colloidal plasmonic metasurfaces concept by integrating them with quantum emitters (gain materials) or mechanically responsive structures. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Melt-mixed thermoplastic composites containing carbon nanotubes for thermoelectric applications
    (Springfield, Mo. : AIMS Press, 2016) Luo, Jinji; Krause, Beate; Pötschke, Petra
    Flexible thermoelectric materials are prepared by melt mixing technique, which can be easily scaled up to industrial level. Hybrid filler systems of carbon nanotubes (CNTs) and copper oxide (CuO), which are environmental friendly materials and contain abundant earth elements, are melt mixed into a thermoplastic matrix, namely polypropylene (PP). With the CNT addition, an electrical network could be built up inside the insulating PP for effective charge transport. The effect of CuO addition is determined by the corresponding CNT concentration. At high CNT concentration, largely above the percolation threshold (φc, ca. 0.1 wt%), the change in the TE properties is small. In contrast, at CNT concentration close to φc, the co-addition of CuO could simultaneously increase the electrical conductivity and Seebeck coefficient. With 5 wt% CuO and 0.8 wt% CNTs where a loose percolated network is formed, the Seebeck coefficient was increased from 34.1 µV/K to 45 µV/K while the electrical conductivity was from 1.6 × 10−3 S/cm to 3.8 × 10−3 S/cm, leading to a power factor of 9.6 × 10−4 µW/mK2 (cf. 1.8 × 10−4 µW/mK2 for the composite with only 0.8 wt% CNTs).
  • Item
    Local chain deformation and overstrain in reinforced elastomers: An NMR study
    (Washington, DC : American Chemical Society, 2013) Pérez-Aparicio, R.; Schiewek, M.; Valentín, J.L.; Schneider, H.; Long, D.R.; Saphiannikova, M.; Sotta, P.; Saalwächter, K.; Ott, M.
    A molecular-level understanding of the strain response of elastomers is a key to connect microscopic dynamics to macroscopic properties. In this study we investigate the local strain response of vulcanized, natural rubber systems and the effect of nanometer-sized filler particles, which are known to lead to highly improved mechanical properties. A multiple-quantum NMR approach enables the separation of relatively low fractions of network defects and allows to quantitatively and selectively study the local deformation distribution in the strained networks matrix on the microscopic (molecular) scale. We find that the presence of nondeformable filler particles induces an enhanced local deformation of the matrix (commonly referred to as overstrain), a slightly increased local stress/strain heterogeneity, and a reduced anisotropy. Furthermore, a careful analysis of the small nonelastic defect fraction provides new evidence that previous NMR and scattering results of strained defect-rich elastomers cannot be interpreted without explicitly taking the nonelastic defect fraction into account.
  • Item
    On the anomalous optical conductivity dispersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model
    (London [u.a.] : RSC, 2019) Chen, Shangzhi; Kühne, Philipp; Stanishev, Vallery; Knight, Sean; Brooke, Robert; Petsagkourakis, Ioannis; Crispin, Xavier; Schubert, Mathias; Darakchieva, Vanya; Jonsson, Magnus P.
    Electrically conducting polymers (ECPs) are becoming increasingly important in areas such as optoelectronics, biomedical devices, and energy systems. Still, their detailed charge transport properties produce an anomalous optical conductivity dispersion that is not yet fully understood in terms of physical model equations for the broad range optical response. Several modifications to the classical Drude model have been proposed to account for a strong non-Drude behavior from terahertz (THz) to infrared (IR) ranges, typically by implementing negative amplitude oscillator functions to the model dielectric function that effectively reduce the conductivity in those ranges. Here we present an alternative description that modifies the Drude model via addition of positive-amplitude Lorentz oscillator functions. We evaluate this so-called Drude-Lorentz (DL) model based on the first ultra-wide spectral range ellipsometry study of ECPs, spanning over four orders of magnitude: from 0.41 meV in the THz range to 5.90 eV in the ultraviolet range, using thin films of poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:Tos) as a model system. The model could accurately fit the experimental data in the whole ultrawide spectral range and provide the complex anisotropic optical conductivity of the material. Examining the resonance frequencies and widths of the Lorentz oscillators reveals that both spectrally narrow vibrational resonances and broader resonances due to localization processes contribute significantly to the deviation from the Drude optical conductivity dispersion. As verified by independent electrical measurements, the DL model accurately determines the electrical properties of the thin film, including DC conductivity, charge density, and (anisotropic) mobility. The ellipsometric method combined with the DL model may thereby become an effective and reliable tool in determining both optical and electrical properties of ECPs, indicating its future potential as a contact-free alternative to traditional electrical characterization. © The Royal Society of Chemistry 2019.
  • Item
    Effects of PNDIT2 end groups on aggregation, thin film structure, alignment and electron transport in field-effect transistors
    (London [u.a.] : RSC, 2016) Matsidik, Rukiya; Luzio, Alessandro; Hameury, Sophie; Komber, Hartmut; McNeill, Christopher R.; Caironi, Mario; Sommer, Michael
    To develop greener protocols toward the sustainable production of conjugated polymers, we combine the advantages of atom-economic direct arylation polycondensation (DAP) with those of the green solvent 2-methyltetrahydrofuran (MeTHF). The n-type copolymer PNDIT2 is synthesized from unsubstituted bithiophene (T2) and 2,6-dibromonapthalene diimide (NDIBr2) under simple DAP conditions in MeTHF. Extensive optimization is required to suppress nucleophilic substitution of NDIBr end groups, which severely limits molar mass. Different carboxylic acids, bases, palladium precursors and ligands are successfully screened to enable quantitative yield and satisfyingly high molar masses up to Mn,SEC ∼ 20 kDa. In contrast to PNDIT2 made via DAP in toluene with tolyl-chain termini, nucleophilic substitution of NDIBr chain ends in MeTHF finally leads to NDI-OH termination. The influence of different chain termini on the optical, thermal, structural and electronic properties of PNDIT2 is investigated. For samples with identical molecular weight, OH-termination leads to slightly reduced aggregation in solution and bulk crystallinity, a decreased degree of alignment in directionally deposited films, and a consequently reduced, but not compromised, electron mobility with promising values still close to 0.9 cm2 V−1 s−1.
  • Item
    Aspect ratio effects of multi-walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites
    (Hoboken, NJ [u.a.] : Wiley, 2014) Guo, Jiaxi; Liu, Yanjun; Prada-Silvy, Ricardo; Tan, Yongqiang; Azad, Samina; Krause, Beate; Pötschke, Petra; Grady, Brian P.
    Two multi-walled carbon nanotubes (MWCNTs) having relatively high aspect ratios of 313 and 474 with approximately the same diameter were melt mixed with polycarbonate (PC) in a twin-screw conical micro compounder. The effects of aspect ratio on the electrical, mechanical, and thermal properties of the PC/MWCNT composites were investigated. Electrical conductivities and storage moduli of the filled samples are found to be independent of the starting aspect ratio for these high aspect ratio tubes; although the conductivities and storage moduli are still significantly higher than values of composites made with nanotubes having more commercially common aspect ratios of ∼100. Transmission electron microscopy results suggest that melt-mixing reduces these longer nanotubes to the same length, but still approximately two times longer than the length of commercially common aspect ratio tubes after melt-mixing. Molecular weight measurements show that during melt-mixing the longer nanotubes significantly degrade the molecular weight of the polymer as compared to very similar nanotubes with aspect ratio ∼100. Because of the molecular weight reduction glass transition temperatures predictably show a large decrease with increasing nanotube concentration. © 2013 Wiley Periodicals, Inc.
  • Item
    Electrical and melt rheological characterization of PC and co-continuous PC/SAN blends filled with CNTs: Relationship between melt-mixing parameters, filler dispersion, and filler aspect ratio
    (Hoboken, NJ [u.a.] : Wiley, 2018) Liebscher, Marco; Domurath, Jan; Krause, Beate; Saphiannikova, Marina; Heinrich, Gert; Pötschke, Petra
    Electrical and melt rheological properties of melt-mixed polycarbonate (PC) and co-continuous PC/poly(styrene–acrylonitrile) (SAN) blends with carbon nanotubes (CNTs) are investigated. Using two sets of mixing parameters, different states of filler dispersion are obtained. With increasing CNT dispersion, an increase in electrical resistivity near the percolation threshold of PC–CNT composites and (PC + CNT)/SAN blends is observed. This suggests that the higher mixing energies required for better dispersion also result in a more severe reduction of the CNT aspect ratio; this effect was proven by CNT length measurements. Melt rheological studies show higher reinforcing effects for composites with worse dispersion. The Eilers equation, describing the melt viscosity as function of filler content, was used to fit the data and to obtain information about an apparent aspect ratio change, which was in accordance with measured CNT length reduction. Such fitting could be also transferred to the blends and serves for a qualitatively based discussion. © 2017 Wiley Periodicals
  • Item
    Influence of talc with different particle sizes in melt-mixed LLDPE/MWCNT composites
    (Hoboken, NJ [u.a.] : Wiley, 2013) Müller, Michael Thomas; Dreyße, Janine; Häußler, Liane; Krause, Beate; Pötschke, Petra
    Linear low-density polyethylene (LLDPE) was melt-mixed with multiwalled carbon nanotubes (MWCNTs) and varying amounts of three different kinds of talc (phyllo silicate), each with a different particle size distribution, to examine the effect of these filler combinations with regards to the electrical percolation behavior. The state of the filler dispersion was assessed using transmission light microscopy and electron microscopy. The use of talc as a second filler during the melt mixing of LLDPE/MWCNT composites resulted in an improvement in the dispersion of the MWCNTs and a decrease of the electrical percolation threshold. Talc with lower particle sizes showed a more pronounced effect than talc with larger particle sizes. However, the improvement in dispersion was not reflected in the mechanical properties. Modulus and stress values increase with both, MWCNT and talc addition, but not in a synergistic manner. The crystallization behavior of the composites was studied by differential scanning calorimetry to determine its potential influence on the electrical percolation threshold. It was found that the crystallinity of the matrix increased slightly with the addition of talc but no further increments were observed with the incorporation of the MWCNTs. © 2013 Wiley Periodicals, Inc.
  • Item
    Topology determines force distributions in one-dimensional random spring networks
    (Woodbury, NY : Inst., 2018) Heidemann, Knut M.; Sageman-Furnas, Andrew O.; Sharma, Abhinav; Rehfeldt, Florian; Schmidt, Christoph F.; Wardetzky, Max
    Networks of elastic fibers are ubiquitous in biological systems and often provide mechanical stability to cells and tissues. Fiber-reinforced materials are also common in technology. An important characteristic of such materials is their resistance to failure under load. Rupture occurs when fibers break under excessive force and when that failure propagates. Therefore, it is crucial to understand force distributions. Force distributions within such networks are typically highly inhomogeneous and are not well understood. Here we construct a simple one-dimensional model system with periodic boundary conditions by randomly placing linear springs on a circle. We consider ensembles of such networks that consist of N nodes and have an average degree of connectivity z but vary in topology. Using a graph-theoretical approach that accounts for the full topology of each network in the ensemble, we show that, surprisingly, the force distributions can be fully characterized in terms of the parameters (N,z). Despite the universal properties of such (N,z) ensembles, our analysis further reveals that a classical mean-field approach fails to capture force distributions correctly. We demonstrate that network topology is a crucial determinant of force distributions in elastic spring networks.
  • Item
    Chain stiffness effect on the properties of topological polymer brushes and the penetration by free chains using MD simulation
    (Bristol ; Philadelphia, PA : IOP Publishing Ltd., 2018) Lyu, Honghong; Xu, Fuxian; Merlitz, Holger; Wu, Chen-Xu
    Molecular dynamic simulations are carried out to study the static and dynamic properties of topological polymer brushes by taking into account chain stiffness and their topological feature. It is found that chain stiffness plays an important role in topological polymer brushes, and there exists scaling laws for the radius of gyration against chain stiffness and topological feature, indicating that bending interaction is as important as topological constraint. An empirical finitely extensible nonlinear elastic force in terms of chain stiffness and topological features is also obtained by fitting related parameters. A simulation on the invasion of free polymer chains from environment into a ring polymer brush shows that under pressure, such kind of penetration depends largely on chain stiffness, in contrast to the minor influence of topological structure, which seems to be suppressed.