Search Results

Now showing 1 - 10 of 94
  • Item
    Dislocations in ceramic electrolytes for solid-state Li batteries
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Porz, L.; Knez, D.; Scherer, M.; Ganschow, S.; Kothleitner, G.; Rettenwander, D.
    High power solid-state Li batteries (SSLB) are hindered by the formation of dendrite-like structures at high current rates. Hence, new design principles are needed to overcome this limitation. By introducing dislocations, we aim to tailor mechanical properties in order to withstand the mechanical stress leading to Li penetration and resulting in a short circuit by a crack-opening mechanism. Such defect engineering, furthermore, appears to enable whisker-like Li metal electrodes for high-rate Li plating. To reach these goals, the challenge of introducing dislocations into ceramic electrolytes needs to be addressed which requires to establish fundamental understanding of the mechanics of dislocations in the particular ceramics. Here we evaluate uniaxial deformation at elevated temperatures as one possible approach to introduce dislocations. By using hot-pressed pellets and single crystals grown by Czochralski method of Li6.4La3Zr1.4Ta0.6O12 garnets as a model system the plastic deformation by more than 10% is demonstrated. While conclusions on the predominating deformation mechanism remain challenging, analysis of activation energy, activation volume, diffusion creep, and the defect structure potentially point to a deformation mechanism involving dislocations. These parameters allow identification of a process window and are a key step on the road of making dislocations available as a design element for SSLB.
  • Item
    Deep learning-based classification of blue light cystoscopy imaging during transurethral resection of bladder tumors
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Ali, Nairveen; Bolenz, Christian; Todenhöfer, Tilman; Stenzel, Arnulf; Deetmar, Peer; Kriegmair, Martin; Knoll, Thomas; Porubsky, Stefan; Hartmann, Arndt; Popp, Jürgen; Kriegmair, Maximilian C.; Bocklitz, Thomas
    Bladder cancer is one of the top 10 frequently occurring cancers and leads to most cancer deaths worldwide. Recently, blue light (BL) cystoscopy-based photodynamic diagnosis was introduced as a unique technology to enhance the detection of bladder cancer, particularly for the detection of flat and small lesions. Here, we aim to demonstrate a BL image-based artificial intelligence (AI) diagnostic platform using 216 BL images, that were acquired in four different urological departments and pathologically identified with respect to cancer malignancy, invasiveness, and grading. Thereafter, four pre-trained convolution neural networks were utilized to predict image malignancy, invasiveness, and grading. The results indicated that the classification sensitivity and specificity of malignant lesions are 95.77% and 87.84%, while the mean sensitivity and mean specificity of tumor invasiveness are 88% and 96.56%, respectively. This small multicenter clinical study clearly shows the potential of AI based classification of BL images allowing for better treatment decisions and potentially higher detection rates.
  • Item
    Reciprocal space slicing: A time-efficient approach to femtosecond x-ray diffraction
    (Melville, NY : AIP Publishing LLC, 2021) Zeuschner, S.P.; Mattern, M.; Pudell, J.-E.; von Reppert, A.; Rössle, M.; Leitenberger, W.; Schwarzkopf, J.; Boschker, J.E.; Herzog, M.; Bargheer, M.
    An experimental technique that allows faster assessment of out-of-plane strain dynamics of thin film heterostructures via x-ray diffraction is presented. In contrast to conventional high-speed reciprocal space-mapping setups, our approach reduces the measurement time drastically due to a fixed measurement geometry with a position-sensitive detector. This means that neither the incident (ω) nor the exit ( 2θ ) diffraction angle is scanned during the strain assessment via x-ray diffraction. Shifts of diffraction peaks on the fixed x-ray area detector originate from an out-of-plane strain within the sample. Quantitative strain assessment requires the determination of a factor relating the observed shift to the change in the reciprocal lattice vector. The factor depends only on the widths of the peak along certain directions in reciprocal space, the diffraction angle of the studied reflection, and the resolution of the instrumental setup. We provide a full theoretical explanation and exemplify the concept with picosecond strain dynamics of a thin layer of NbO2.
  • Item
    Dressed j eff-1/2 objects in mixed-valence lacunar spinel molybdates
    (London : Nature Publishing Group, 2023) Petersen, Thorben; Prodan, Lilian; Geirhos, Korbinian; Nakamura, Hiroyuki; Kézsmárki, István; Hozoi, Liviu
    The lacunar-spinel chalcogenides exhibit magnetic centers in the form of transition-metal tetrahedra. On the basis of density-functional computations, the electronic ground state of an Mo413+ tetrahedron has been postulated as single-configuration a12 e4 t25, where a1, e, and t2 are symmetry-adapted linear combinations of single-site Mo t2g atomic orbitals. Here we unveil the many-body tetramer wave-function: we show that sizable correlations yield a weight of only 62% for the a12 e4 t25 configuration. While spin–orbit coupling within the peculiar valence orbital manifold is still effective, the expectation value of the spin–orbit operator and the g factors deviate from figures describing nominal t5jeff = 1/2 moments. As such, our data documents the dressing of a spin–orbit jeff = 1/2 object with intra-tetramer excitations. Our results on the internal degrees of freedom of these magnetic moments provide a solid theoretical starting point in addressing the intriguing phase transitions observed at low temperatures in these materials.
  • Item
    Restricted differentiative capacity of Wt1-expressing peritoneal mesothelium in postnatal and adult mice
    (London : Nature Publishing Group, 2021) Wilm, Thomas P.; Tanton, Helen; Mutter, Fiona; Foisor, Veronica; Middlehurst, Ben; Ward, Kelly; Benameur, Tarek; Hastie, Nicholas; Wilm, Bettina
    Previously, genetic lineage tracing based on the mesothelial marker Wt1, appeared to show that peritoneal mesothelial cells have a range of differentiative capacities and are the direct progenitors of vascular smooth muscle in the intestine. However, it was not clear whether this was a temporally limited process or continued throughout postnatal life. Here, using a conditional Wt1-based genetic lineage tracing approach, we demonstrate that the postnatal and adult peritoneum covering intestine, mesentery and body wall only maintained itself and failed to contribute to other visceral tissues. Pulse-chase experiments of up to 6 months revealed that Wt1-expressing cells remained confined to the peritoneum and failed to differentiate into cellular components of blood vessels or other tissues underlying the peritoneum. Our data confirmed that the Wt1-lineage system also labelled submesothelial cells. Ablation of Wt1 in adult mice did not result in changes to the intestinal wall architecture. In the heart, we observed that Wt1-expressing cells maintained the epicardium and contributed to coronary vessels in newborn and adult mice. Our results demonstrate that Wt1-expressing cells in the peritoneum have limited differentiation capacities, and that contribution of Wt1-expressing cells to cardiac vasculature is based on organ-specific mechanisms.
  • Item
    Toward ultrafast magnetic depth profiling using time-resolved x-ray resonant magnetic reflectivity
    (Melville, NY : AIP Publishing LLC, 2021) Chardonnet, Valentin; Hennes, Marcel; Jarrier, Romain; Delaunay, Renaud; Jaouen, Nicolas; Kuhlmann, Marion; Ekanayake, Nagitha; Léveillé, Cyril; von Korff Schmising, Clemens; Schick, Daniel; Yao, Kelvin; Liu, Xuan; Chiuzbăian, Gheorghe S.; Lüning, Jan; Vodungbo, Boris; Jal, Emmanuelle
    During the last two decades, a variety of models have been developed to explain the ultrafast quenching of magnetization following femtosecond optical excitation. These models can be classified into two broad categories, relying either on a local or a non-local transfer of angular momentum. The acquisition of the magnetic depth profiles with femtosecond resolution, using time-resolved x-ray resonant magnetic reflectivity, can distinguish local and non-local effects. Here, we demonstrate the feasibility of this technique in a pump–probe geometry using a custom-built reflectometer at the FLASH2 free-electron laser (FEL). Although FLASH2 is limited to the production of photons with a fundamental wavelength of 4 nm (≃310 eV), we were able to probe close to the Fe L3 edge (706.8 eV) of a magnetic thin film employing the third harmonic of the FEL. Our approach allows us to extract structural and magnetic asymmetry signals revealing two dynamics on different time scales which underpin a non-homogeneous loss of magnetization and a significant dilation of 2 Å of the layer thickness followed by oscillations. Future analysis of the data will pave the way to a full quantitative description of the transient magnetic depth profile combining femtosecond with nanometer resolution, which will provide further insight into the microscopic mechanisms underlying ultrafast demagnetization.
  • Item
    Templating the morphology of soft microgel assemblies using a nanolithographic 3D-printed membrane
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Linkhorst, John; Lölsberg, Jonas; Thill, Sebastian; Lohaus, Johannes; Lüken, Arne; Naegele, Gerhard; Wessling, Matthias
    Filter cake formation is the predominant phenomenon limiting the filtration performance of membrane separation processes. However, the filter cake’s behavior at the particle scale, which determines its overall cake behavior, has only recently come into the focus of scientists, leaving open questions about its formation and filtration behavior. The present study contributes to the fundamental understanding of soft filter cakes by analyzing the influence of the porous membrane’s morphology on crystal formation and the compaction behavior of soft filter cakes under filtration conditions. Microfluidic chips with nanolithographic imprinted filter templates were used to trigger the formation of crystalline colloidal filter cakes formed by soft microgels. The soft filter cakes were observed via confocal laser scanning microscopy (CLSM) under dead-end filtration conditions. Colloidal crystal formation in the cake, as well as their compaction behavior, were analyzed by optical visualization and pressure data. For the first time, we show that exposing the soft cake to a crystalline filter template promotes the formation of colloidal crystallites and that soft cakes experience gradient compression during filtration.
  • Item
    Universality in spectral condensation
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Pavithran, Induja; Unni, Vishnu R.; Varghese, Alan J.; Premraj, D.; Sujith, R. I.; Vijayan, C.; Saha, Abhishek; Marwan, Norbert; Kurths, Jürgen
    Self-organization is the spontaneous formation of spatial, temporal, or spatiotemporal patterns in complex systems far from equilibrium. During such self-organization, energy distributed in a broadband of frequencies gets condensed into a dominant mode, analogous to a condensation phenomenon. We call this phenomenon spectral condensation and study its occurrence in fluid mechanical, optical and electronic systems. We define a set of spectral measures to quantify this condensation spanning several dynamical systems. Further, we uncover an inverse power law behaviour of spectral measures with the power corresponding to the dominant peak in the power spectrum in all the aforementioned systems.
  • Item
    Morpho-molecular signal correlation between optical coherence tomography and Raman spectroscopy for superior image interpretation and clinical diagnosis
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Schie, Iwan W.; Placzek, Fabian; Knorr, Florian; Cordero, Eliana; Wurster, Lara M.; Hermann, Gregers G.; Mogensen, Karin; Hasselager, Thomas; Drexler, Wolfgang; Popp, Jürgen; Leitgeb, Rainer A.
    The combination of manifold optical imaging modalities resulting in multimodal optical systems allows to discover a larger number of biomarkers than using a single modality. The goal of multimodal imaging systems is to increase the diagnostic performance through the combination of complementary modalities, e.g. optical coherence tomography (OCT) and Raman spectroscopy (RS). The physical signal origins of OCT and RS are distinctly different, i.e. in OCT it is elastic back scattering of photons, due to a change in refractive index, while in RS it is the inelastic scattering between photons and molecules. Despite those diverse characteristics both modalities are also linked via scattering properties and molecular composition of tissue. Here, we investigate for the first time the relation of co-registered OCT and RS signals of human bladder tissue, to demonstrate that the signals of these complementary modalities are inherently intertwined, enabling a direct but more importantly improved interpretation and better understanding of the other modality. This work demonstrates that the benefit for using two complementary imaging approaches is, not only the increased diagnostic value, but the increased information and better understanding of the signal origins of both modalities. This evaluation confirms the advantages for using multimodal imaging systems and also paves the way for significant further improved understanding and clinically interpretation of both modalities in the future.
  • Item
    Dynamic Network Characteristics of Power-electronics-based Power Systems
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Ji, Yuxi; He, Wei; Cheng, Shijie; Kurths, Jürgen; Zhan, Meng
    Power flow studies in traditional power systems aim to uncover the stationary relationship between voltage amplitude and phase and active and reactive powers; they are important for both stationary and dynamic power system analysis. With the increasing penetration of large-scale power electronics devices including renewable generations interfaced with converters, the power systems become gradually power-electronics-dominant and correspondingly their dynamical behavior changes substantially. Due to the fast dynamics of converters, such as AC current controller, the quasi-stationary state approximation, which has been widely used in power systems, is no longer appropriate and should be reexamined. In this paper, for a better description of network characteristics, we develop a novel concept of dynamic power flow and uncover an explicit dynamic relation between the instantaneous powers and the voltage vectors. This mathematical relation has been well verified by simulations on transient analysis of a small power-electronics-based power system, and a small-signal frequency-domain stability analysis of a voltage source converter connected to an infinitely strong bus. These results demonstrate the applicability of the proposed method and shed an improved light on our understanding of power-electronics-dominant power systems, whose dynamical nature remains obscure.