Search Results

Now showing 1 - 10 of 11
  • Item
    Toward ultrafast magnetic depth profiling using time-resolved x-ray resonant magnetic reflectivity
    (Melville, NY : AIP Publishing LLC, 2021) Chardonnet, Valentin; Hennes, Marcel; Jarrier, Romain; Delaunay, Renaud; Jaouen, Nicolas; Kuhlmann, Marion; Ekanayake, Nagitha; Léveillé, Cyril; von Korff Schmising, Clemens; Schick, Daniel; Yao, Kelvin; Liu, Xuan; Chiuzbăian, Gheorghe S.; Lüning, Jan; Vodungbo, Boris; Jal, Emmanuelle
    During the last two decades, a variety of models have been developed to explain the ultrafast quenching of magnetization following femtosecond optical excitation. These models can be classified into two broad categories, relying either on a local or a non-local transfer of angular momentum. The acquisition of the magnetic depth profiles with femtosecond resolution, using time-resolved x-ray resonant magnetic reflectivity, can distinguish local and non-local effects. Here, we demonstrate the feasibility of this technique in a pump–probe geometry using a custom-built reflectometer at the FLASH2 free-electron laser (FEL). Although FLASH2 is limited to the production of photons with a fundamental wavelength of 4 nm (≃310 eV), we were able to probe close to the Fe L3 edge (706.8 eV) of a magnetic thin film employing the third harmonic of the FEL. Our approach allows us to extract structural and magnetic asymmetry signals revealing two dynamics on different time scales which underpin a non-homogeneous loss of magnetization and a significant dilation of 2 Å of the layer thickness followed by oscillations. Future analysis of the data will pave the way to a full quantitative description of the transient magnetic depth profile combining femtosecond with nanometer resolution, which will provide further insight into the microscopic mechanisms underlying ultrafast demagnetization.
  • Item
    Direct measurement of Coulomb-laser coupling
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Azoury, Doron; Krüger, Michael; Bruner, Barry D.; Smirnova, Olga; Dudovich, Nirit
    The Coulomb interaction between a photoelectron and its parent ion plays an important role in a large range of light-matter interactions. In this paper we obtain a direct insight into the Coulomb interaction and resolve, for the first time, the phase accumulated by the laser-driven electron as it interacts with the Coulomb potential. Applying extreme-ultraviolet interferometry enables us to resolve this phase with attosecond precision over a large energy range. Our findings identify a strong laser-Coulomb coupling, going beyond the standard recollision picture within the strong-field framework. Transformation of the results to the time domain reveals Coulomb-induced delays of the electrons along their trajectories, which vary by tens of attoseconds with the laser field intensity.
  • Item
    Phonon anharmonicities and ultrafast dynamics in epitaxial Sb2Te3
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Bragaglia, V.; Ramsteiner, M.; Schick, D.; Boschker, J.E.; Mitzner, R.; Calarco, R.; Holldack, K.
    In this study we report on the investigation of epitaxially grown Sb2Te3 by employing Fourier-Transform transmission Spectroscopy (FTS) with laser-induced Coherent Synchrotron Radiation (CSR) in the Terahertz (THz) spectral range. Static spectra in the range between 20 and 120 cm−1 highlight a peculiar softening of an in-plane IR-active phonon mode upon temperature decrease, as opposed to all Raman active modes which instead show a hardening upon temperature decrease in the same energy range. The phonon mode softening is found to be accompanied by an increase of free carrier concentration. A strong coupling of the two systems (free carriers and phonons) is observed and further evidenced by exciting the same phonon mode at 62 cm−1 within an ultrafast pump-probe scheme employing a femtosecond laser as pump and a CSR single cycle THz pulse as probe. Separation of the free carrier contribution and the phonon resonance in the investigated THz range reveals that, both damping of the phonon mode and relaxation of hot carriers in the time domain happen on the same time scale of 5 ps. This relaxation is about a factor of 10 slower than expected from the Lorentz time-bandwidth limit. The results are discussed in the framework of phonon scattering at thermal and laser induced transient free carriers.
  • Item
    Generation and collective interaction of giant magnetic dipoles in laser cluster plasma
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Andreev, A.; Platonov, K.; Lécz, Z.; Hafz, N.
    Interaction of circularly polarized laser pulses with spherical nano-droplets generates nanometer-size magnets with lifetime on the order of hundreds of femtoseconds. Such magnetic dipoles are close enough in a cluster target and magnetic interaction takes place. We investigate such system of several magnetic dipoles and describe their rotation in the framework of Lagrangian formalism. The semi-analytical results are compared to particle-in-cell simulations, which confirm the theoretically obtained terrahertz frequency of the dipole oscillation.
  • Item
    Transient magnetic gratings on the nanometer scale
    (Melville, NY : AIP Publishing LLC, 2020) Weder, D.; von Korff Schmising, C.; Günther, C.M.; Schneider, M.; Engel, D.; Hessing, P.; Strüber, C.; Weigand, M.; Vodungbo, B.; Jal, E.; Liu, X.; Merhe, A.; Pedersoli, E.; Capotondi, F.; Lüning, J.; Pfau, B.; Eisebitt, S.
    Laser-driven non-local electron dynamics in ultrathin magnetic samples on a sub-10 nm length scale is a key process in ultrafast magnetism. However, the experimental access has been challenging due to the nanoscopic and femtosecond nature of such transport processes. Here, we present a scattering-based experiment relying on a laser-induced electro- and magneto-optical grating in a Co/Pd ferromagnetic multilayer as a new technique to investigate non-local magnetization dynamics on nanometer length and femtosecond timescales. We induce a spatially modulated excitation pattern using tailored Al near-field masks with varying periodicities on a nanometer length scale and measure the first four diffraction orders in an x-ray scattering experiment with magnetic circular dichroism contrast at the free-electron laser facility FERMI, Trieste. The design of the periodic excitation mask leads to a strongly enhanced and characteristic transient scattering response allowing for sub-wavelength in-plane sensitivity for magnetic structures. In conjunction with scattering simulations, the experiment allows us to infer that a potential ultrafast lateral expansion of the initially excited regions of the magnetic film mediated by hot-electron transport and spin transport remains confined to below three nanometers.
  • Item
    Stable coherent mode-locking based on π pulse formation in single-section lasers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Arkhipov, Rostislav; Pakhomov, Anton; Arkhipov, Mikhail; Babushkin, Ihar; Rosanov, Nikolay
    Here we consider coherent mode-locking (CML) regimes in single-section cavity lasers, taking place for pulse durations less than atomic population and phase relaxation times, which arise due to coherent Rabi oscillations of the atomic inversion. Typically, CML is introduced for lasers with two sections, the gain and absorber ones. Here we show that, for certain combination of the cavity length and relaxation parameters, a very stable CML in a laser, containing only gain section, may arise. The mode-locking is unconditionally self-starting and appears due to balance of intra-pulse de-excitation and slow interpulse-scale pump-induced relaxation processes. We also discuss the scaling of the system to shorter pulse durations, showing a possibility of mode-locking for few-cycle pulses.
  • Item
    Imaging plasma formation in isolated nanoparticles with ultrafast resonant scattering
    (Melville, NY : AIP Publishing LLC, 2020) Rupp, Daniela; Flückiger, Leonie; Adolph, Marcus; Colombo, Alessandro; Gorkhover, Tais; Harmand, Marion; Krikunova, Maria; Müller, Jan Philippe; Oelze, Tim; Ovcharenko, Yevheniy; Richter, Maria; Sauppe, Mario; Schorb, Sebastian; Treusch, Rolf; Wolter, David; Bostedt, Christoph; Möller, Thomas
    We have recorded the diffraction patterns from individual xenon clusters irradiated with intense extreme ultraviolet pulses to investigate the influence of light-induced electronic changes on the scattering response. The clusters were irradiated with short wavelength pulses in the wavelength regime of different 4d inner-shell resonances of neutral and ionic xenon, resulting in distinctly different optical properties from areas in the clusters with lower or higher charge states. The data show the emergence of a transient structure with a spatial extension of tens of nanometers within the otherwise homogeneous sample. Simulations indicate that ionization and nanoplasma formation result in a light-induced outer shell in the cluster with a strongly altered refractive index. The presented resonant scattering approach enables imaging of ultrafast electron dynamics on their natural timescale.
  • Item
    Influence of tunnel ionization to third-harmonic generation of infrared femtosecond laser pulses in air
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Tamulienė, Viktorija; Juškevičiūtė, Greta; Buožius, Danas; Vaičaitis, Virgilijus; Babushkin, Ihar; Morgner, Uwe
    Here we present an experimental as well as theoretical study of third-harmonic generation in tightly focused femtosecond filaments in air at the wavelength of 1.5μm. At low intensities, longitudinal phase matching is dominating in the formation of 3rd harmonics, whereas at higher intensities locked X-waves are formed. We provide the arguments that the X-wave formation is governed mainly by the tunnel-like ionization dynamics rather than by the multiphoton one. Despite of this fact, the impact of the ionization-induced nonlinearity is lower than the one from bound–bound transitions at all intensities. © 2020, The Author(s).
  • Item
    Population difference gratings created on vibrational transitions by nonoverlapping subcycle THz pulses
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Arkhipov, Rostislav; Pakhomov, Anton; Arkhipov, Mikhail; Babushkin, Ihar; Demircan, Ayhan; Morgner, Uwe; Rosanov, Nikolay
    We study theoretically a possibility of creation and ultrafast control (erasing, spatial frequency multiplication) of population density gratings in a multi-level resonant medium having a resonance transition frequency in the THz range. These gratings are produced by subcycle THz pulses coherently interacting with a nonlinear medium, without any need for pulses to overlap, thereby utilizing an indirect pulse interaction via an induced coherent polarization grating. High values of dipole moments of the transitions in the THz range facilitate low field strength of the needed THz excitation. Our results clearly show this possibility in multi-level resonant media. Our theoretical approach is based on an approximate analytical solution of time-dependent Schrödinger equation (TDSE) using perturbation theory. Remarkably, as we show here, quasi-unipolar subcycle pulses allow more efficient excitation of higher quantum levels, leading to gratings with a stronger modulation depth. Numerical simulations, performed for THz resonances of the H20 molecule using Bloch equations for density matrix elements, are in agreement with analytical results in the perturbative regime. In the strong-field non-perturbative regime, the spatial shape of the gratings becomes non-harmonic. A possibility of THz radiation control using such gratings is discussed. The predicted phenomena open novel avenues in THz spectroscopy of molecules with unipolar and quasi-unipolar THz light bursts and allow for better control of ultra-short THz pulses.
  • Item
    Highly efficient soft x-ray spectrometer for transient absorption spectroscopy with broadband table-top high harmonic sources
    (Melville, NY : AIP Publishing LLC, 2021) Kleine, Carlo; Ekimova, Maria; Winghart, Marc-Oliver; Eckert, Sebastian; Reichel, Oliver; Löchel, Heike; Probst, Jürgen; Braig, Christoph; Seifert, Christian; Erko, Alexei; Sokolov, Andrey; Vrakking, Marc J. J.; Nibbering, Erik T. J.; Rouzée, Arnaud
    We present a novel soft x-ray spectrometer for ultrafast absorption spectroscopy utilizing table-top femtosecond high-order harmonic sources. Where most commercially available spectrometers rely on spherical variable line space gratings with a typical efficiency on the order of 3% in the first diffractive order, this spectrometer, based on a Hettrick-Underwood design, includes a reflective zone plate as a dispersive element. An improved efficiency of 12% at the N K-edge is achieved, accompanied by a resolving power of 890. The high performance of the soft x-ray spectrometer is further demonstrated by comparing nitrogen K-edge absorption spectra from calcium nitrate in aqueous solution obtained with our high-order harmonic source to previous measurements performed at the electron storage ring facility BESSY II.