Search Results

Now showing 1 - 10 of 30
  • Item
    Distribution of Cracks in a Chain of Atoms at Low Temperature
    (Cham (ZG) : Springer International Publishing AG, 2021) Jansen, Sabine; König, Wolfgang; Schmidt, Bernd; Theil, Florian
    We consider a one-dimensional classical many-body system with interaction potential of Lennard–Jones type in the thermodynamic limit at low temperature 1/β∈(0,∞). The ground state is a periodic lattice. We show that when the density is strictly smaller than the density of the ground state lattice, the system with N particles fills space by alternating approximately crystalline domains (clusters) with empty domains (voids) due to cracked bonds. The number of domains is of the order of Nexp(−βesurf/2) with esurf>0 a surface energy. For the proof, the system is mapped to an effective model, which is a low-density lattice gas of defects. The results require conditions on the interactions between defects. We succeed in verifying these conditions for next-nearest neighbor interactions, applying recently derived uniform estimates of correlations.
  • Item
    Stochastic homogenization on perforated domains II – Application to nonlinear elasticity models
    (Berlin : Wiley-VCH, 2022) Heida, Martin
    Based on a recent work that exposed the lack of uniformly bounded (Formula presented.) extension operators on randomly perforated domains, we study stochastic homogenization of nonlinear p-elasticity, (Formula presented.), on such structures using instead the extension operators constructed in former works. We thereby introduce two-scale convergence methods on such random domains under the intrinsic loss of regularity and prove some generally useful calculus theorems on the probability space, for example, abstract Gauss theorems.
  • Item
    Local Well-Posedness of Strong Solutions to the Three-Dimensional Compressible Primitive Equations
    (Berlin ; Heidelberg : Springer, 2021) Liu, Xin; Titi, Edriss S.
    This work is devoted to establishing the local-in-time well-posedness of strong solutions to the three-dimensional compressible primitive equations of atmospheric dynamics. It is shown that strong solutions exist, are unique, and depend continuously on the initial data, for a short time in two cases: with gravity but without vacuum, and with vacuum but without gravity. © 2021, The Author(s).
  • Item
    Revealing all states of dewetting of a thin gold layer on a silicon surface by nanosecond laser conditioning
    (Amsterdam : Elsevier, 2021) Ernst, Owen C.; Uebel, David; Kayser, Stefan; Lange, Felix; Teubner, Thomas; Boeck, Torsten
    Dewetting is a ubiquitous phenomenon which can be applied to the laser synthesis of nanoparticles. A classical spinodal dewetting process takes place in four successive states, which differ from each other in their morphology. In this study all states are revealed by interaction of pulsed nanosecond UV laser light with thin gold layers with thicknesses between 1 nm and 10 nm on (100) silicon wafers. The specific morphologies of the dewetting states are discussed with particular emphasis on the state boundaries. The main parameter determining which state is formed is not the duration for which the gold remains liquid, but rather the input energy provided by the laser. This shows that each state transition has a separate measurable activation energy. The temperature during the nanosecond pulses and the duration during which the gold remains liquid was determined by simulation using the COMSOL Multiphysics® software package. Using these calculations, an accurate local temperature profile and its development over time was simulated. An analytical study of the morphologies and formed structures was performed using Minkowski measures. With aid of this tool, the laser induced structures were compared with thermally annealed samples, with perfectly ordered structures and with perfectly random structures. The results show that both, structures of the laser induced and the annealed samples, strongly resemble the perfectly ordered structures. This reveals a close relationship between these structures and suggests that the phenomenon under investigation is indeed a spinodal dewetting generated by an internal material wave function. The purposeful generation of these structures and the elucidation of the underlying mechanism of dewetting by short pulse lasers may assist the realisation of various technical elements such as nanowires in science and industry. © 2020
  • Item
    Mode competition in broad-ridge-waveguide lasers
    (Bristol : IOP Publ., 2020) Koester, J.-P.; Putz, A.; Wenzel, H.; Wünsche, H.-J.; Radziunas, M.; Stephan, H.; Wilkens, M.; Zeghuzi, A.; Knigge, A.
    The lateral brightness achievable with high-power GaAs-based laser diodes having long and broad waveguides is commonly regarded to be limited by the onset of higher-order lateral modes. For the study of the lateral-mode competition two complementary simulation tools are applied, representing different classes of approximations. The first tool bases on a completely incoherent superposition of mode intensities and disregards longitudinal effects like spatial hole burning, whereas the second tool relies on a simplified carrier transport and current flow. Both tools yield agreeing power-current characteristics that fit the data measured for 5-23 µm wide ridges. Also, a similarly good qualitative conformance of the near and far fields is found. However, the threshold of individual modes, the partition of power between them at a given current, and details of the near and far fields show differences. These differences are the consequence of a high sensitivity of the mode competition to details of the models and of the device structure. Nevertheless, it can be concluded concordantly that the brightness rises with increasing ridge width irrespective of the onset of more and more lateral modes. The lateral brightness W mm-1at 10 MW cm-2 power density on the front facet of the investigated laser with widest ridge (23 µm) is comparable with best values known from much wider broad-area lasers. In addition, we show that one of the simulation tools is able to predict beam steering and coherent beam coupling without introducing any phenomenological coupling coefficient or asymmetries. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Analysis and simulations for a phase-field fracture model at finite strains based on modified invariants
    (Berlin : Wiley-VCH, 2020) Thomas, Marita; Bilgen, Carola; Weinberg, Kerstin
    Phase-field models have already been proven to predict complex fracture patterns for brittle fracture at small strains. In this paper we discuss a model for phase-field fracture at finite deformations in more detail. Among the identification of crack location and projection of crack growth the numerical stability is one of the main challenges in solid mechanics. Here we present a phase-field model at finite strains, which takes into account the anisotropy of damage by applying an anisotropic split of the modified invariants of the right Cauchy-Green strain tensor. We introduce a suitable weak notion of solution that also allows for a spatial and temporal discretization of the model. In this framework we study the existence of solutions and we show that the time-discrete solutions converge in a weak sense to a solution of the time-continuous formulation of the model. Numerical examples in two and three space dimensions illustrate the range of validity of the analytical results.
  • Item
    Maximally dissipative solutions for incompressible fluid dynamics
    (Cham (ZG) : Springer International Publishing AG, 2021) Lasarzik, Robert
    We introduce the new concept of maximally dissipative solutions for a general class of isothermal GENERIC systems. Under certain assumptions, we show that maximally dissipative solutions are well-posed as long as the bigger class of dissipative solutions is non-empty. Applying this result to the Navier–Stokes and Euler equations, we infer global well-posedness of maximally dissipative solutions for these systems. The concept of maximally dissipative solutions coincides with the concept of weak solutions as long as the weak solutions inherits enough regularity to be unique.
  • Item
    Analysis of improved Nernst–Planck–Poisson models of compressible isothermal electrolytes
    (Cham (ZG) : Springer International Publishing AG, 2020) Dreyer, Wolfgang; Druet, Pierre-Étienne; Gajewski, Paul; Guhlke, Clemens
    We consider an improved Nernst–Planck–Poisson model first proposed by Dreyer et al. in 2013 for compressible isothermal electrolytes in non-equilibrium. The elastic deformation of the medium, that induces an inherent coupling of mass and momentum transport, is taken into account. The model consists of convection–diffusion–reaction equations for the constituents of the mixture, of the Navier–Stokes equation for the barycentric velocity and of the Poisson equation for the electrical potential. Due to the principle of mass conservation, cross-diffusion phenomena must occur, and the mobility matrix (Onsager matrix) has a non-trivial kernel. In this paper, we establish the existence of a global-in-time weak solution, allowing for a general structure of the mobility tensor and for chemical reactions with fast nonlinear rates in the bulk and on the active boundary. We characterise the singular states of the system, showing that the chemical species can vanish only globally in space, and that this phenomenon must be concentrated in a compact set of measure zero in time.
  • Item
    Experimental proof of Joule heating-induced switched-back regions in OLEDs
    (London : Nature Publishing Group, 2020) Kirch, Anton; Fische, Axel; Liero, Matthias; Fuhrmann, Jürgen; Glitzky, Annegret; Reineke, Sebastian
    Organic light-emitting diodes (OLEDs) have become a major pixel technology in the display sector, with products spanning the entire range of current panel sizes. The ability to freely scale the active area to large and random surfaces paired with flexible substrates provides additional application scenarios for OLEDs in the general lighting, automotive, and signage sectors. These applications require higher brightness and, thus, current density operation compared to the specifications needed for general displays. As extended transparent electrodes pose a significant ohmic resistance, OLEDs suffering from Joule self-heating exhibit spatial inhomogeneities in electrical potential, current density, and hence luminance. In this article, we provide experimental proof of the theoretical prediction that OLEDs will display regions of decreasing luminance with increasing driving current. With a two-dimensional OLED model, we can conclude that these regions are switched back locally in voltage as well as current due to insufficient lateral thermal coupling. Experimentally, we demonstrate this effect in lab-scale devices and derive that it becomes more severe with increasing pixel size, which implies its significance for large-area, high-brightness use cases of OLEDs. Equally, these non-linear switching effects cannot be ignored with respect to the long-term operation and stability of OLEDs; in particular, they might be important for the understanding of sudden-death scenarios. © 2020, The Author(s).
  • Item
    Nonlinear dynamical properties of frequency swept fiber-based semiconductor lasers
    (Bristol : IOP Publishing, 2021) Slepneva, Svetlana; Pimenov, Alexander
    We investigate dynamics of semiconductor lasers with fiber-based unidirectional ring cavity that can be used as frequency swept sources. We identify key factors behind the reach dynamical behavior of such lasers using state-of-the-art experimental and analytical methods. Experimentally, we study the laser in static, quasi-static and synchronization regimes. We apply experimental methods such as optical heterodyne or electric field reconstruction in order to characterize these regimes or study the mechanisms of transition between them. Using a delay differential equation model, we demonstrate that the presence of chromatic dispersion can lead to destabilization of the laser modes through modulational instability, which results in undesirable chaotic emission. We characterize the instability threshold both theoretically and experimentally, and demonstrate deterioration of the Fourier domain mode locking regime near the threshold.