Search Results

Now showing 1 - 7 of 7
  • Item
    An existence result for a class of nonlinear magnetorheological composites
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Nika, Grigor
    We prove existence of a weak solution for a nonlinear, multi-physics, multi-scale problem of magnetorheological suspensions introduced in Nika & Vernescu (Z. Angew. Math. Phys., 71(1):1--19, '20). The hybrid model couples the Stokes' equation with the quasi-static Maxwell's equations through the Lorentz force and the Maxwell stress tensor. The proof of existence is based on: i) the augmented variational formulation of Maxwell's equations, ii) the definition of a new function space for the magnetic induction and the proof of a Poincaré type inequality, iii) the Altman--Shinbrot fixed point theorem when the magnetic Reynold's number, Rm, is small.
  • Item
    Leray--Hopf solutions to a viscoelastic fluid model with nonsmooth stress-strain relation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Eiter, Thomas; Hopf, Katharina; Mielke, Alexander
    We consider a fluid model including viscoelastic and viscoplastic effects. The state is given by the fluid velocity and an internal stress tensor that is transported along the flow with the Zaremba--Jaumann derivative. Moreover, the stress tensor obeys a nonlinear and nonsmooth dissipation law as well as stress diffusion. We prove the existence of global-in-time weak solutions satisfying an energy inequality under general Dirichlet conditions for the velocity field and Neumann conditions for the stress tensor.
  • Item
    A coarse-grained electrothermal model for organic semiconductor devices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Glitzky, Annegret; Liero, Matthias; Nika, Grigor
    We derive a coarse-grained model for the electrothermal interaction of organic semiconductors. The model combines stationary drift-diffusion based electrothermal models with thermistor type models on subregions of the device and suitable transmission conditions. Moreover, we prove existence of a solution using a regularization argument and Schauder's fixed point theorem. In doing so, we extend recent work by taking into account the statistical relation given by the Gauss--Fermi integral and mobility functions depending on the temperature, charge-carrier density, and field strength, which is required for a proper description of organic devices.
  • Item
    A theory of generalised solutions for ideal gas mixtures with Maxwell--Stefan diffusion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Druet, Pierre-Étienne
    After the pioneering work by Giovangigli on mathematics of multicomponent flows, several attempts were made to introduce global weak solutions for the PDEs describing the dynamics of fluid mixtures. While the incompressible case with constant density was enlighted well enough due to results by Chen and Jüngel (isothermal case), or Marion and Temam, some open questions remain for the weak solution theory of gas mixtures with their corresponding equations of mixed parabolic-hyperbolic type. For instance, Mucha, Pokorny and Zatorska showed the possibility to stabilise the hyperbolic component by means of the Bresch-Desjardins technique and a regularisation of pressure preventing vacuum. The result by Dreyer, Druet, Gajewski and Guhlke avoids emphex machina stabilisations, but the mathematical assumption that the Onsager matrix is uniformly positive on certain subspaces leads, in the dilute limit, to infinite diffusion velocities which are not compatible with the Maxwell-Stefan form of diffusion fluxes. In this paper, we prove the existence of global weak solutions for isothermal and ideal compressible mixtures with natural diffusion. The main new tool is an asymptotic condition imposed at low pressure on the binary Maxwell-Stefan diffusivities, which compensates possibly extreme behaviour of weak solutions in the rarefied regime.
  • Item
    On the existence of weak solutions in the context of multidimensional incompressible fluid dynamics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Lasarzik, Robert
    We define the concept of energy-variational solutions for the Navier--Stokes and Euler equations. This concept is shown to be equivalent to weak solutions with energy conservation. Via a standard Galerkin discretization, we prove the existence of energy-variational solutions and thus weak solutions in any space dimension for the Navier--Stokes equations. In the limit of vanishing viscosity the same assertions are deduced for the incompressible Euler system. Via the selection criterion of maximal dissipation we deduce well-posedness for these equations.
  • Item
    A coarse‐grained electrothermal model for organic semiconductor devices
    (Chichester, West Sussex : Wiley, 2022) Glitzky, Annegret; Liero, Matthias; Nika, Grigor
    We derive a coarse-grained model for the electrothermal interaction of organic semiconductors. The model combines stationary drift-diffusion- based electrothermal models with thermistor-type models on subregions of the device and suitable transmission conditions. Moreover, we prove existence of a solution using a regularization argument and Schauder's fixed point theorem. In doing so, we extend recent work by taking into account the statistical relation given by the Gauss–Fermi integral and mobility functions depending on the temperature, charge-carrier density, and field strength, which is required for a proper description of organic devices.
  • Item
    On the Regularity of Weak Solutions to Time-Periodic Navier–Stokes Equations in Exterior Domains
    (Basel : MDPI, 2022) Eiter, Thomas
    Consider the time-periodic viscous incompressible fluid flow past a body with non-zero velocity at infinity. This article gives sufficient conditions such that weak solutions to this problem are smooth. Since time-periodic solutions do not have finite kinetic energy in general, the well-known regularity results for weak solutions to the corresponding initial-value problem cannot be transferred directly. The established regularity criterion demands a certain integrability of the purely periodic part of the velocity field or its gradient, but it does not concern the time mean of these quantities.