Search Results

Now showing 1 - 10 of 22
Loading...
Thumbnail Image
Item

Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals

2019, Galazka, Zbigniew, Ganschow, Steffen, Schewski, Robert, Irmscher, Klaus, Klimm, Detlef, Kwasniewski, Albert, Pietsch, Mike, Fiedler, Andreas, Schulze-Jonack, Isabelle, Albrecht, Martin, Schröder, Thomas, Bickermann, Matthias

Truly bulk ZnGa2O4 single crystals were obtained directly from the melt. High melting point of 1900 ± 20 °C and highly incongruent evaporation of the Zn- and Ga-containing species impose restrictions on growth conditions. The obtained crystals are characterized by a stoichiometric or near-stoichiometric composition with a normal spinel structure at room temperature and by a narrow full width at half maximum of the rocking curve of the 400 peak of (100)-oriented samples of 23 arcsec. ZnGa2O4 is a single crystalline spinel phase with the Ga/Zn atomic ratio up to about 2.17. Melt-grown ZnGa2O4 single crystals are thermally stable up to 1100 and 700 °C when subjected to annealing for 10 h in oxidizing and reducing atmospheres, respectively. The obtained ZnGa2O4 single crystals were either electrical insulators or n-type semiconductors/degenerate semiconductors depending on growth conditions and starting material composition. The as-grown semiconducting crystals had the resistivity, free electron concentration, and maximum Hall mobility of 0.002–0.1 Ωcm, 3 × 1018–9 × 1019 cm−3, and 107 cm2 V−1 s−1, respectively. The semiconducting crystals could be switched into the electrically insulating state by annealing in the presence of oxygen at temperatures ≥700 °C for at least several hours. The optical absorption edge is steep and originates at 275 nm, followed by full transparency in the visible and near infrared spectral regions. The optical bandgap gathered from the absorption coefficient is direct with a value of about 4.6 eV, close to that of β-Ga2O3. Additionally, with a lattice constant of a = 8.3336 Å, ZnGa2O4 may serve as a good lattice-matched substrate for magnetic Fe-based spinel films.

Loading...
Thumbnail Image
Item

Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics

2018, Ringleb, Franziska, Andree, Stefan, Heidmann, Berit, Bonse, Jörn, Eylers, Katharina, Ernst, Owen, Boeck, Torsten, Schmid, Martina, Krüger, Jörg

Micro-concentrator solar cells offer an attractive way to further enhance the efficiency of planar-cell technologies while saving absorber material. Here, two laser-based bottom-up processes for the fabrication of regular arrays of CuInSe2 and Cu(In,Ga)Se2 microabsorber islands are presented, namely one approach based on nucleation and one based on laser-induced forward transfer. Additionally, a procedure for processing these microabsorbers to functioning micro solar cells connected in parallel is demonstrated. The resulting cells show up to 2.9% efficiency and a significant efficiency enhancement under concentrated illumination.

Loading...
Thumbnail Image
Item

Cobalt as a promising dopant for producing semi-insulating β -Ga2O3crystals: Charge state transition levels from experiment and theory

2022, Seyidov, Palvan, Varley, Joel B., Galazka, Zbigniew, Chou, Ta-Shun, Popp, Andreas, Fiedler, Andreas, Irmscher, Klaus

Optical absorption and photoconductivity measurements of Co-doped β-Ga2O3 crystals reveal the photon energies of optically excited charge transfer between the Co related deep levels and the conduction or valence band. The corresponding photoionization cross sections are fitted by a phenomenological model considering electron-phonon coupling. The obtained fitting parameters: thermal ionization (zero-phonon transition) energy, Franck-Condon shift, and effective phonon energy are compared with corresponding values predicted by first principle calculations based on density functional theory. A (+/0) donor level ∼0.85 eV above the valence band maximum and a (0/-) acceptor level ∼2.1 eV below the conduction band minimum are consistently derived. Temperature-dependent electrical resistivity measurement at elevated temperatures (up to 1000 K) yields a thermal activation energy of 2.1 ± 0.1 eV, consistent with the position of the Co acceptor level. Furthermore, the results show that Co doping is promising for producing semi-insulating β-Ga2O3 crystals.

Loading...
Thumbnail Image
Item

Substrate-orientation dependence of β -Ga2O3 (100), (010), (001), and (2 ̄ 01) homoepitaxy by indium-mediated metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE)

2020, Mazzolini, P., Falkenstein, A., Wouters, C., Schewski, R., Markurt, T., Galazka, Z., Martin, M., Albrecht, M., Bierwagen, O.

We experimentally demonstrate how In-mediated metal-exchange catalysis (MEXCAT) allows us to widen the deposition window for β-Ga2O3 homoepitaxy to conditions otherwise prohibitive for its growth via molecular beam epitaxy (e.g., substrate temperatures ≥800 °C) on the major substrate orientations, i.e., (010), (001), (2⎯⎯01), and (100) 6°-offcut. The obtained crystalline qualities, surface roughnesses, growth rates, and In-incorporation profiles are shown and compared with different experimental techniques. The growth rates, Γ, for fixed growth conditions are monotonously increasing with the surface free energy of the different orientations with the following order: Γ(010) > Γ(001) > Γ(2⎯⎯01) > Γ(100). Ga2O3 surfaces with higher surface free energy provide stronger bonds to the surface ad-atoms or ad-molecules, resulting in decreasing desorption, i.e., a higher incorporation/growth rate. The structural quality in the case of (2⎯⎯01), however, is compromised by twin domains due to the crystallography of this orientation. Notably, our study highlights β-Ga2O3 layers with high structural quality grown by MEXCAT-MBE not only in the most investigated (010) orientation but also in the (100) and (001) ones. In particular, MEXCAT on the (001) orientation results in both growth rate and structural quality comparable to the ones achievable with (010), and the limited incorporation of In associated with the MEXCAT deposition process does not change the insulating characteristics of unintentionally doped layers. The (001) surface is therefore suggested as a valuable alternative orientation for devices.

Loading...
Thumbnail Image
Item

Growth of PdCoO2 films with controlled termination by molecular-beam epitaxy and determination of their electronic structure by angle-resolved photoemission spectroscopy

2022, Song, Qi, Sun, Jiaxin, Parzyck, Christopher T., Miao, Ludi, Xu, Qing, Hensling, Felix V. E., Barone, Matthew R., Hu, Cheng, Kim, Jinkwon, Faeth, Brendan D., Paik, Hanjong, King, Phil D. C., Shen, Kyle M., Schlom, Darrell G.

Utilizing the powerful combination of molecular-beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES), we produce and study the effect of different terminating layers on the electronic structure of the metallic delafossite PdCoO2. Attempts to introduce unpaired electrons and synthesize new antiferromagnetic metals akin to the isostructural compound PdCrO2 have been made by replacing cobalt with iron in PdCoO2 films grown by MBE. Using ARPES, we observe similar bulk bands in these PdCoO2 films with Pd-, CoO2-, and FeO2-termination. Nevertheless, Pd- and CoO2-terminated films show a reduced intensity of surface states. Additionally, we are able to epitaxially stabilize PdFexCo1-xO2 films that show an anomaly in the derivative of the electrical resistance with respect to temperature at 20 K, but do not display pronounced magnetic order.

Loading...
Thumbnail Image
Item

Elastic properties of single crystal Bi12SiO20 as a function of pressure and temperature and acoustic attenuation effects in Bi12 MO20 (M = Si, Ge and Ti)

2020, Haussühl, Eiken, Reichmann, Hans Josef, Schreuer, Jürgen, Friedrich, Alexandra, Hirschle, Christian, Bayarjargal, Lkhamsuren, Winkler, Björn, Alencar, Igor, Wiehl, Leonore, Ganschow, Steffen

A comprehensive study of sillenite Bi12SiO20 single-crystal properties, including elastic stiffness and piezoelectric coefficients, dielectric permittivity, thermal expansion and molar heat capacity, is presented. Brillouin-interferometry measurements (up to 27 GPa), which were performed at high pressures for the first time, and ab initio calculations based on density functional theory (up to 50 GPa) show the stability of the sillenite structure in the investigated pressure range, in agreement with previous studies. Elastic stiffness coefficients c 11 and c 12 are found to increase continuously with pressure while c 44 increases slightly for lower pressures and remains nearly constant above 15 GPa. Heat-capacity measurements were performed with a quasi-adiabatic calorimeter employing the relaxation method between 2 K and 395 K. No phase transition could be observed in this temperature interval. Standard molar entropy, enthalpy change and Debye temperature are extracted from the data. The results are found to be roughly half of the previous values reported in the literature. The discrepancy is attributed to the overestimation of the Debye temperature which was extracted from high-temperature data. Additionally, Debye temperatures obtained from mean sound velocities derived by Voigt-Reuss averaging are in agreement with our heat-capacity results. Finally, a complete set of electromechanical coefficients was deduced from the application of resonant ultrasound spectroscopy between 103 K and 733 K. No discontinuities in the temperature dependence of the coefficients are observed. High-temperature (up to 1100 K) resonant ultrasound spectra recorded for Bi12 MO20 crystals revealed strong and reversible acoustic dissipation effects at 870 K, 960 K and 550 K for M = Si, Ge and Ti, respectively. Resonances with small contributions from the elastic shear stiffness c 44 and the piezoelectric stress coefficient e 123 are almost unaffected by this dissipation. © 2020 The Author(s). Published by IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Temperature dependence of the Seebeck coefficient of epitaxial β -Ga2O3 thin films

2019, Boy, Johannes, Handwerg, Martin, Ahrling, Robin, Mitdank, Rüdiger, Wagner, Günter, Galazka, Zbigniew, Fischer, Saskia F.

The temperature dependence of the Seebeck coefficient of homoepitaxial metal organic vapor phase grown, silicon doped β-Ga 2 O 3 thin films was measured relative to aluminum. For room temperature, we found the relative Seebeck coefficient of Sβ-Ga2O3-Al=(-300±20) μV/K. At high bath temperatures T > 240 K, the scattering is determined by electron-phonon-interaction. At lower bath temperatures between T = 100 K and T = 300 K, an increase in the magnitude of the Seebeck coefficient is explained in the frame of Stratton's formula. The influence of different scattering mechanisms on the magnitude of the Seebeck coefficient is discussed and compared with Hall measurement results. © 2019 Author(s).

Loading...
Thumbnail Image
Item

Analysis of catalyst surface wetting: The early stage of epitaxial germanium nanowire growth

2020, Ernst, Owen C., Lange, Felix, Uebel, David, Teubner, Thomas, Boeck, Torsten

The dewetting process is crucial for several applications in nanotechnology. Even though not all dewetting phenomena are fully understood yet, especially regarding metallic fluids, it is clear that the formation of nanometre-sized particles, droplets, and clusters as well as their movement are strongly linked to their wetting behaviour. For this reason, the thermodynamic stability of thin metal layers (0.1-100 nm) with respect to their free energy is examined here. The decisive factor for the theoretical considerations is the interfacial energy. In order to achieve a better understanding of the interfacial interactions, three different models for estimating the interfacial energy are presented here: (i) fully theoretical, (ii) empirical, and (iii) semi-empirical models. The formation of nanometre-sized gold particles on silicon and silicon oxide substrates is investigated in detail. In addition, the strengths and weaknesses of the three models are elucidated, the different substrates used are compared, and the possibility to further process the obtained particles as nanocatalysts is verified. The importance of a persistent thin communication wetting layer between the particles and its effects on particle size and number is also clarified here. In particular, the intrinsic reduction of the Laplace pressure of the system due to material re-evaporation and Ostwald ripening describes the theoretically predicted and experimentally obtained results. Thus, dewetting phenomena of thin metal layers can be used to manufacture nanostructured devices. From this point of view, the application of gold droplets as catalysts to grow germanium nanowires on different substrates is described. © 2020 Ernst et al.

Loading...
Thumbnail Image
Item

Lithium metal penetration induced by electrodeposition through solid electrolytes: Example in single-crystal Li6La3ZrTaO12 garnet

2018, Swamy, Tushar, Park, Richard, Sheldon, Brian W., Rettenwander, Daniel, Porz, Lukas, Berendts, Stefan, Uecker, Reinhard, Carter, W. Craig, Chiang, Yet-Ming

Solid electrolytes potentially enable rechargeable batteries with lithium metal anodes possessing higher energy densities than today’s lithium ion batteries. To do so the solid electrolyte must suppress instabilities that lead to poor coulombic efficiency and short circuits. In this work, lithium electrodeposition was performed on single-crystal Li6La3ZrTaO12 garnets to investigate factors governing lithium penetration through brittle electrolytes. In single crystals, grain boundaries are excluded as paths for lithium metal propagation. Vickers microindentation was used to introduce surface flaws of known size. However, operando optical microscopy revealed that lithium metal penetration propagates preferentially from a different, second class of flaws. At the perimeter of surface current collectors smaller in size than the lithium source electrode, an enhanced electrodeposition current density causes lithium filled cracks to initiate and grow to penetration, even when large Vickers defects are in proximity. Modeling the electric field distribution in the experimental cell revealed that a 5-fold enhancement in field occurs within 10 micrometers of the electrode edge and generates high local electrochemomechanical stress. This may determine the initiation sites for lithium propagation, overriding the presence of larger defects elsewhere.

Loading...
Thumbnail Image
Item

Epitaxial stannate pyrochlore thin films: Limitations of cation stoichiometry and electron doping

2021, Hensling, Felix V. E., Dahliah, Diana, Dulal, Prabin, Singleton, Patrick, Sun, Jiaxin, Schubert, Jürgen, Paik, Hanjong, Subedi, Indra, Subedi, Biwas, Rignanese, Gian-Marco, Podraza, Nikolas J., Hautier, Geoffroy, Schlom, Darrell G.

We have studied the growth of epitaxial films of stannate pyrochlores with a general formula A2Sn2O7 (A = La and Y) and find that it is possible to incorporate ∼25% excess of the A-site constituent; in contrast, any tin excess is expelled. We unravel the defect chemistry, allowing for the incorporation of excess A-site species and the mechanism behind the tin expulsion. An A-site surplus is manifested by a shift in the film diffraction peaks, and the expulsion of tin is apparent from the surface morphology of the film. In an attempt to increase La2Sn2O7 conductivity through n-type doping, substantial quantities of tin have been substituted by antimony while maintaining good film quality. The sample remained insulating as explained by first-principles computations, showing that both the oxygen vacancy and antimony-on-tin substitutional defects are deep. Similar conclusions are drawn on Y2Sn2O7. An alternative n-type dopant, fluorine on oxygen, is shallow according to computations and more likely to lead to electrical conductivity. The bandgaps of stoichiometric La2Sn2O7 and Y2Sn2O7 films were determined by spectroscopic ellipsometry to be 4.2 eV and 4.48 eV, respectively. © 2021 Author(s).