Search Results

Now showing 1 - 2 of 2
  • Item
    Producing Policy-relevant Science by Enhancing Robustness and Model Integration for the Assessment of Global Environmental Change
    (Amsterdam [u.a.] : Elsevier Science, 2019) Warren, R.F.; Edwards, N.R.; Babonneau, F.; Bacon, P.M.; Dietrich, J.P.; Ford, R.W.; Garthwaite, P.; Gerten, D.; Goswami, S.; Haurie, A.; Hiscock, K.; Holden, P.B.; Hyde, M.R.; Joshi, S.R.; Kanudia, A.; Labriet, M.; Leimbach, M.; Oyebamiji, O.K.; Osborn, T.; Pizzileo, B.; Popp, A.; Price, J.; Riley, G.D.; Schaphoff, S.; Slavin, P.; Vielle, M.; Wallace, C.
    We use the flexible model coupling technology known as the bespoke framework generator to link established existing modules representing dynamics in the global economy (GEMINI_E3), the energy system (TIAM-WORLD), the global and regional climate system (MAGICC6, PLASIM-ENTS and ClimGEN), the agricultural system, the hydrological system and ecosystems (LPJmL), together in a single integrated assessment modelling (IAM) framework, building on the pre-existing framework of the Community Integrated Assessment System. Next, we demonstrate the application of the framework to produce policy-relevant scientific information. We use it to show that when using carbon price mechanisms to induce a transition from a high-carbon to a low-carbon economy, prices can be minimised if policy action is taken early, if burden sharing regimes are used, and if agriculture is intensified. Some of the coupled models have been made available for use at a secure and user-friendly web portal. © 2018 The Authors
  • Item
    Short term policies to keep the door open for Paris climate goals
    (Bristol : IOP Publ., 2018) Kriegler, Elmar; Bertram, Christoph; Kuramochi, Takeshi; Jakob, Michael; Pehl, Michaja; Stevanović, Miodrag; Höhne, Niklas; Luderer, Gunnar; Minx, Jan C; Fekete, Hanna; Hilaire, Jérôme; Luna, Lisa; Popp, Alexander; Steckel, Jan Christoph; Sterl, Sebastian; Yalew, Amsalu Woldie; Dietrich, Jan Philipp; Edenhofer, Ottmar
    Climate policy needs to account for political and social acceptance. Current national climate policy plans proposed under the Paris Agreement lead to higher emissions until 2030 than cost-effective pathways towards the Agreements' long-term temperature goals would imply. Therefore, the current plans would require highly disruptive changes, prohibitive transition speeds, and large long-term deployment of risky mitigation measures for achieving the agreement's temperature goals after 2030. Since the prospects of introducing the cost-effective policy instrument, a global comprehensive carbon price in the near-term, are negligible, we study how a strengthening of existing plans by a global roll-out of regional policies can ease the implementation challenge of reaching the Paris temperature goals. The regional policies comprise a bundle of regulatory policies in energy supply, transport, buildings, industry, and land use and moderate, regionally differentiated carbon pricing. We find that a global roll-out of these policies could reduce global CO2 emissions by an additional 10 GtCO2eq in 2030 compared to current plans. It would lead to emissions pathways close to the levels of cost-effective likely below 2 °C scenarios until 2030, thereby reducing implementation challenges post 2030. Even though a gradual phase-in of a portfolio of regulatory policies might be less disruptive than immediate cost-effective carbon pricing, it would perform worse in other dimensions. In particular, it leads to higher economic impacts that could become major obstacles in the long-term. Hence, such policy packages should not be viewed as alternatives to carbon pricing, but rather as complements that provide entry points to achieve the Paris climate goals.