Search Results

Now showing 1 - 10 of 7472
  • Item
    Crystal structure of (2S,4S,7S)-7,7-dichloro-4-(1-chloro-1-methylethyl)-1- (2,2,2-trichloroethyl)bicyclo[4.1.0]heptane, C12H16Cl 6
    (Berlin : de Gruyter, 2009) Boualy, B.; el Firdoussi, L.; Ali, M.A.; Karim, A.; Spannenberg, A.
    C12H16Cl6, orthorhombic, P2 12121 (no. 19), a = 6.0742(3) Å, b = 9.7189(6) Å, c = 26.700(1) Å, V = 1576.2 Å3, Z = 4, Rgt(F) = 0.019, wRref(F2) = 0.045, T= 200 K. © by Oldenbourg Wissenschaftsverlag.
  • Item
    Differentialgeometrie im Grossen (hybrid meeting)
    (Zürich : EMS Publ. House, 2021) Hamenstädt, Ursula; Lang, Urs; Weinkove, Ben
    The field of classical differential geometry has expanded enormously over the last several decades, helped by the development of tools from neighboring fields such as partial differential equations, complex analysis and geometric topology. In the spirit of the previous meetings in the series, this meeting will bring together researchers from apparently separate subfields of differential geometry, but whose work is linked by common themes. In particular, this meeting will emphasize intrinsic geometric questions motivated by the classification and rigidity of global geometric structures and the interaction of curvature with the underlying geometry and topology.
  • Item
    Arbeitsgemeinschaft mit aktuellem Thema: Polylogarithms
    (Zürich : EMS Publ. House, 2004) Kings, Guido; Wildeshaus, Jörg
    [no abstract available]
  • Item
    Effects of (complementary) polyelectrolytes characteristics on composite calcium carbonate microparticles properties
    (Bucureşti : [Verlag nicht ermittelbar], 2017) Mic, Cristian Barbu; Mihai, Marcela; Varganici, Cristian Dragos; Schwarz, Simona; Scutaru, Dan; Simionescu, Bogdan C.
    This study follows the possibility to tune the thermal stability of some CaCO3/polymer composites by crystal growth from supersaturated solutions controlled by polymer structure or by using nonstoichiometric polyelectrolyte complexes (NPECs). As the ratio between the organic and inorganic parts in the composites controls the Ca2+/polymer network crosslinking density, the CaCO3/polymer weight ratio was kept constant at 50/1, varying the initial concentration of the polyanions solutions (0.05 or 0.06 wt.%), the NPECs molar ratio , n+/n- (0.2 or 0.4), or the inorganic precursors concentration (0.25 or 0.3 M). Poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylic acid) (PSA) and chondroitin-4-sulfate (CSA) were used as polyanions. Some NPEC dispersions, prepared with the same polyanions and poly(allylamine hydrochloride) (PAH), were also used for calcium carbonate crystallization. The characteristics of the prepared composites were investigated by scanning electron microscopy (SEM), flow particle image analysis (FPIA), particles charge density (CD), zeta-potential (ZP). The thermal stability of the composite particles was investigated as compared to bare CaCO3 microparticles prepared at the same initial inorganic concentrations.
  • Item
    Ultrafast OH-stretching frequency shifts of hydrogen-bonded 2-naphthol photoacid-base complexes in solution
    (Les Ulis : EDP Sciences, 2013) Prémont-Schwarz, M.; Xiao, D.; Sekharan, S.; Batista, V.S.; Nibbering, E.T.J.
    We characterize the transient solvent-dependent OH-stretching frequency shifts of photoacid 2-naphthol hydrogen-bonded with CH3CN in the S0- and S1-states using a combined experimental and theoretical approach, and disentangle specific hydrogen-bonding contributions from nonspecific dielectric response.
  • Item
    Ice-marginal forced regressive deltas in glacial lake basins: geomorphology, facies variability and large-scale depositional architecture
    (Oxford [u.a.] : Wiley-Blackwell, 2018) Winsemann, Jutta; Lang, Jörg; Polom, Ulrich; Loewer, Markus; Igel, Jan; Pollok, Lukas; Brandes, Christian
    This study presents a synthesis of the geomorphology, facies variability and depositional architecture of ice-marginal deltas affected by rapid lake-level change. The integration of digital elevation models, outcrop, borehole, ground-penetrating radar and high-resolution shear-wave seismic data allows for a comprehensive analysis of these delta systems and provides information about the distinct types of deltaic facies and geometries generated under different lake-level trends. The exposed delta sediments record mainly the phase of maximum lake level and subsequent lake drainage. The stair-stepped profiles of the delta systems reflect the progressive basinward lobe deposition during forced regression when the lakes successively drained. Depending on the rate and magnitude of lake-level fall, fan-shaped, lobate or more digitate tongue-like delta morphologies developed. Deposits of the stair-stepped transgressive delta bodies are buried, downlapped and onlapped by the younger forced regressive deposits. The delta styles comprise both Gilbert-type deltas and shoal-water deltas. The sedimentary facies of the steep Gilbert-type delta foresets include a wide range of gravity-flow deposits. Delta deposits of the forced-regressive phase are commonly dominated by coarse-grained debrisflow deposits, indicating strong upslope erosion and cannibalization of older delta deposits. Deposits of supercritical turbidity currents are particularly common in sand-rich Gilbert-type deltas that formed during slow rises in lake level and during highstands. Foreset beds consist typically of laterally and vertically stacked deposits of antidunes and cyclic steps. The trigger mechanisms for these supercritical turbidity currents were both hyperpycnal meltwater flows and slope-failure events. Shoal-water deltas formed at low water depths during both low rates of lake-level rise and forced regression. Deposition occurred from tractional flows. Transgressive mouthbars form laterally extensive sand-rich delta bodies with a digitate, multi-tongue morphology. In contrast, forced regressive gravelly shoal-water deltas show a high dispersion of flow directions and form laterally overlapping delta lobes. Deformation structures in the forced-regressive ice-marginal deltas are mainly extensional features, including normal faults, small graben or half-graben structures and shear-deformation bands, which are related to gravitational delta tectonics, postglacial faulting during glacial-isostatic adjustment, and crestal collapse above salt domes. A neotectonic component cannot be ruled out in some cases. © 2018 The Authors. Boreas published by John Wiley & Sons Ltd on behalf of The Boreas Collegium
  • Item
    Simulation of the future sea level contribution of Greenland with a new glacial system model
    (Katlenburg-Lindau : Copernicus, 2018) Calov, Reinhard; Beyer, Sebastian; Greve, Ralf; Beckmann, Johanna; Willeit, Matteo; Kleiner, Thomas; Rückamp, Martin; Humbert, Angelika; Ganopolski, Andrey
    We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. The aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961-1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961-1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation-surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute between 1.9 and 13.0 cm to global sea level rise until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation-surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, taking the Helheim and Store glaciers as examples, we investigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temperature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.
  • Item
    Inferring causation from time series in Earth system sciences
    ([London] : Nature Publishing Group UK, 2019) Runge, Jakob; Bathiany, Sebastian; Bollt, Erik; Camps-Valls, Gustau; Coumou, Dim; Deyle, Ethan; Glymour, Clark; Kretschmer, Marlene; Mahecha, Miguel D.; Muñoz-Marí, Jordi; van Nes, Egbert H.; Peters, Jonas; Quax, Rick; Reichstein, Markus; Scheffer, Marten; Schölkopf, Bernhard; Spirtes, Peter; Sugihara, George; Sun, Jie; Zhang, Kun; Zscheischler, Jakob
    The heart of the scientific enterprise is a rational effort to understand the causes behind the phenomena we observe. In large-scale complex dynamical systems such as the Earth system, real experiments are rarely feasible. However, a rapidly increasing amount of observational and simulated data opens up the use of novel data-driven causal methods beyond the commonly adopted correlation techniques. Here, we give an overview of causal inference frameworks and identify promising generic application cases common in Earth system sciences and beyond. We discuss challenges and initiate the benchmark platform causeme.net to close the gap between method users and developers. © 2019, The Author(s).
  • Item
    Thermoelectric Properties of N-Type Poly (Ether Ether Ketone)/Carbon Nanofiber Melt-Processed Composites
    (Basel : MDPI, 2022) Paleo, Antonio Jose; Krause, Beate; Soares, Delfim; Melle-Franco, Manuel; Muñoz, Enrique; Pötschke, Petra; Rocha, Ana Maria
    The thermoelectric properties, at temperatures from 30 °C to 100 °C, of melt-processed poly(ether ether ketone) (PEEK) composites prepared with 10 wt.% of carbon nanofibers (CNFs) are discussed in this work. At 30 °C, the PEEK/CNF composites show an electrical conductivity (σ) of ~27 S m−1 and a Seebeck coefficient (S) of −3.4 μV K−1, which means that their majority charge carriers are electrons. The origin of this negative Seebeck is deduced because of the impurities present in the as-received CNFs, which may cause sharply varying and localized states at approximately 0.086 eV above the Fermi energy level (EF) of CNFs. Moreover, the lower S, in absolute value, found in PEEK/CNF composites, when compared with the S of as-received CNFs (−5.3 μV K−1), is attributed to a slight electron withdrawing from the external layers of CNFs by the PEEK matrix. At temperatures from 30 °C to 100 °C, the σ (T) of PEEK/CNF composites, in contrast to the σ (T) of as-received CNFs, shows a negative temperature effect, understood through the 3D variable-range hopping (VRH) model, as a thermally activated hopping mechanism across a random network of potential wells. Moreover, their nonlinear S (T) follows the same behavior reported before for polypropylene composites melt-processed with similar CNFs at the same interval of temperatures.
  • Item
    Li+/H+ exchange of Li7La3Zr2O12 single and polycrystals investigated by quantitative LIBS depth profiling
    (Cambridge : Royal Society of Chemistry, 2022) Smetaczek, Stefan; Limbeck, Andreas; Zeller, Veronika; Ring, Joseph; Ganschow, Steffen; Rettenwander, Daniel; Fleig, Jürgen
    Li7La3Zr2O12 (LLZO) garnets are highly attractive to be used as solid electrolyte in solid-state Li batteries. However, LLZO suffers from chemical interaction with air and humidity, causing Li+/H+ exchange with detrimental implication on its performance, processing and scalability. To better understand the kinetics of the detrimental Li+/H+ exchange and its dependence on microstructural features, accelerated Li+/H+ exchange experiments were performed on single crystalline and polycrystalline LLZO, exposed for 80 minutes to 80 °C hot water. The resulting chemical changes were quantified by analytical methods, i.e. inductively coupled plasma optical emission spectroscopy (ICP-OES) and laser induced breakdown spectroscopy (LIBS). From the time dependence of the Li+ enrichment in the water, measured by ICP-OES, a bulk interdiffusion coefficient of Li+/H+ could be determined (7 × 10−17 m2 s−1 at 80 °C). Depth dependent concentrations were obtained from the LIBS data for both ions after establishing a calibration method enabling not only Li+ but also H+ quantification in the solid electrolyte. Short interdiffusion lengths in the 1 μm range are found for the single crystalline Ga:LLZO, in accordance with the measured bulk diffusion coefficient. In polycrystalline Ta:LLZO, however, very long diffusion tails in the 20 μm range and ion exchange fractions up to about 70% are observed. Those are attributed to fast ion interdiffusion along grain boundaries. The severe compositional changes also strongly affect the electrical properties measured by impedance spectroscopy. This study highlights that microstructural effects may be decisive for the Li+/H+ ion exchange kinetics of LLZO.