Search Results

Now showing 1 - 9 of 9
  • Item
    X-ray emission from stainless steel foils irradiated by femtosecond petawatt laser pulses
    (Bristol : IOP Publ., 2018) Alkhimova, M.A.; Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu.; Pikuz, S.A.; Nishiuchi, M.; Sakaki, H.; Pirozhkov, A.S.; Sagisaka, S.; Dover, N.P.; Kondo, Ko.; Ogura, K.; Fukuda, Y.; Kiriyama, H.; Esirkepov, T.; Bulanov, S V.; Andreev, A.; Kando, M.; Zhidkov, A.; Nishitani, K.; Miyahara, T.; Watanabe, Y.; Kodama, R.; Kondo, K.
    We report about nonlinear growth of x-ray emission intensity emitted from plasma generated by femtosecond petawatt laser pulses irradiating stainless steel foils. X-ray emission intensity increases as ∼ I 4.5 with laser intensity I on a target. High spectrally resolved x-ray emission from front and rear surfaces of 5 μm thickness stainless steel targets were obtained at the wavelength range 1.7-2.1 Å, for the first time in experiments at femtosecond petawatt laser facility J-KAREN-P. Total intensity of front x-ray spectra three times dominates to rear side spectra for maximum laser intensity I ≈ 3.21021 W/cm2. Growth of x-ray emission is mostly determined by contribution of bremsstrahlung radiation that allowed estimating bulk electron plasma temperature for various magnitude of laser intensity on target.
  • Item
    Optimization of the energy deposition in glasses with temporally-shaped femtosecond laser pulses
    (Amsterdam [u.a.] : Elsevier, 2011) Mauclair, C.; Mishchik, K.; Mermillod-Blondin, A.; Rosenfeld, A.; Hertel, I.V.; Audouard, E.; Stoian, R.
    Bulk machining of glasses with femtosecond laser pulses enables the fabrication of embedded optical functions. Due to the nonlinear character of the laser-matter interaction, structural modifications can occur within the focal region. To reach a full control of the process, ways of controlling the deposition of the laser energy inside the material have to be unveiled. From static and time-resolved pictures of bulk-excitation of a-SiO2 and borosilicate glass, we show that particular laser temporal shapes such as picosecond sequences can better confine the energy deposition than the femtosecond sequence by reducing the propagation artifacts.
  • Item
    All-optical Stückelberg spectroscopy of strongly driven Rydberg states
    (College Park, MD : APS, 2022) Bengs, Ulrich; Patchkovskii, Serguei; Ivanov, Misha; Zhavoronkov, Nickolai
    The AC Stark shift of electronic levels is ubiquitous in the interaction of intense light fields with atoms and molecules. As the light intensity changes on the rising and falling edges of a femtosecond laser pulse, it shifts the Rydberg states in and out of multiphoton resonances with the ground state. The two resonant pathways for transient excitation arising at the leading and the trailing edges of the pulse generate Young's type interference, generally referred to as the Stückelberg oscillations. Here we report the observation of the Stückelberg oscillations in the intensity of the coherent free-induction decay following resonant multiphoton excitation. Moreover, combining the experimental results with accurate numerical simulations and a simple model, we use the Stückelberg oscillations to recover the population dynamics of strongly driven Rydberg states inside the laser pulse by all-optical measurements after the end of the pulse. We demonstrate the potential of this spectroscopy to characterize lifetimes of Rydberg states dressed by laser fields with strengths far exceeding the Coulomb field between the Rydberg electron and the core.
  • Item
    Towards time resolved core level photoelectron spectroscopy with femtosecond x-ray free-electron lasers
    (College Park, MD : Institute of Physics Publishing, 2008) Pietzsch, A.; Föhlisch, A.; Beye, M.; Deppe, M.; Hennies, F.; Nagasono, M.; Suljotil, E.; Wurth, W.; Gahl, C.; Dörich, K.; Melnikov, A.
    We have performed core level photoelectron spectroscopy on a W(110) single crystal with femtosecond XUV pulses from the free-electron laser at Hamburg (FLASH). We demonstrate experimentally and through theoretical modelling that for a suitable range of photon fluences per pulse, time-resolved photoemission experiments on solid surfaces are possible. Using FLASH pulses in combination with a synchronized optical laser, we have performed femtosecond time-resolved core-level photoelectron spectroscopy and observed sideband formation on the W 4f lines indicating a cross correlation between femtosecond optical and XUV pulses. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Ultrafast optical excitations of metallic nanostructures: From light confinement to a novel electron source
    (College Park, MD : Institute of Physics Publishing, 2007) Ropers, C.; Elsaesser, T.; Cerullo, G.; Zavelani-Rossi, M.; Lienau, C.
    Combining ultrafast coherent spectroscopy with nano-optical microscopy techniques offers a wealth of new possibilities for exploring the structure and function of nanostructures. In this paper, we describe newly developed nano-optical methods based on short-pulse laser sources with durations in the 10 fs regime. These techniques are used to unravel some of the intricate dynamics of elementary excitations in metallic nanostructures. Specifically, we explore light localization and storage in plasmonic crystals, demonstrate field enhancement and second harmonic generation from metallic nanotips and describe a novel nanometre-sized source of electron pulses. The rapid progress in this area offers exciting new prospects for probing and controlling electron dynamics in metallic nanostructures with femtosecond temporal and nanometre spatial resolution. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Valley control by linearly polarized laser pulses: example of WSe2
    (Washington, DC : OSA, 2022) Sharma, S.; Elliott, P.; Shallcross, S.
    Electrons at the band edges of materials are endowed with a valley index, a quantum number locating the band edge within the Brillouin zone. An important question is then how this index may be controlled by laser pulses, with current understanding that it couples exclusively via circularly polarized light. Employing both tight-binding and state-of-the-art time dependent density function theory, we show that on femtosecond time scales valley coupling is a much more general effect. We find that two time separated linearly polarized pulses allow almost complete control over valley excitation, with the pulse time difference and polarization vectors emerging as key parameters for valley control. Our findings highlight the possibility of controlling coherent electronic excitation by successive femtosecond laser pulses, and offer a route towards valleytronics in two-dimensional materials.
  • Item
    Compact intense extreme-ultraviolet source
    (Washington, DC : OSA, 2021) Major, Balázs; Ghafur, Omair; Kovács, Katalin; Varjú, Katalin; Tosa, Valer; Vrakking, Marc J. J.; Schütte, B.
    High-intensity laser pulses covering the ultraviolet to terahertz spectral regions are nowadays routinely generated in a large number of laboratories. In contrast, intense extreme-ultraviolet (XUV) pulses have only been demonstrated using a small number of sources including free-electron laser facilities [1-3] and long high-harmonic generation (HHG) beamlines [4-9]. Here we demonstrate a concept for a compact intense XUV source based on HHG that is focused to an intensity of $2 \times 10^{14}$ W/cm$^2$, with a potential increase up to $10^{17}$ W/cm$^2$ in the future. Our approach uses tight focusing of the near-infrared (NIR) driving laser and minimizes the XUV virtual source size by generating harmonics several Rayleigh lengths away from the NIR focus. Accordingly, the XUV pulses can be refocused to a small beam waist radius of 600 nm, enabling the absorption of up to four XUV photons by a single Ar atom in a setup that fits on a modest (2 m) laser table. Our concept represents a straightforward approach for the generation of intense XUV pulses in many laboratories, providing novel opportunities for XUV strong-field and nonlinear optics experiments, for XUV-pump XUV-probe spectroscopy and for the coherent diffractive imaging of nanoscale structures.
  • Item
    Chirp-control of resonant high-order harmonic generation in indium ablation plumes driven by intense few-cycle laser pulses
    (Washington, DC : Optical Society of America, OSA, 2018) Abdelrahman, Z.; Khokhlova, M.A.; Walke, D.J.; Witting, T.; Zair, A.; Strelkov, V.V.; Marangos, J.P.; Tisch, J.W.G.
    We have studied high-order harmonic generation (HHG) in an indium ablation plume driven by intense few-cycle laser pulses centered at 775 nm as a function of the frequency chirp of the laser pulse. We found experimentally that resonant emission lines between 19.7 eV and 22.3 eV (close to the 13th and 15th harmonic of the laser) exhibit a strong, asymmetric chirp dependence, with pronounced intensity modulations. The chirp dependence is reproduced by our numerical time-dependent Schrödinger equation simulations of a resonant HHG by the model indium ion. As demonstrated with our separate simulations of HHG within the strong field approximation, the resonance can be understood in terms of the chirp-dependent HHG photon energy coinciding with the energy of an autoionizing state to ground state transition with high oscillator strength. This supports the validity of the general theory of resonant four-step HHG in the few-cycle limit.
  • Item
    Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources
    (Melville, NY : AIP Publishing LLC, 2017) Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas
    Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu Kα wavelength with a photon flux of up to 109 photons per pulse into the full solid angle, perfectly synchronized to the sub- 100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source.