Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO 3

2019, Wu, L.S., Nikitin, S.E., Wang, Z., Zhu, W., Batista, C.D., Tsvelik, A.M., Samarakoon, A.M., Tennant, D.A., Brando, M., Vasylechko, L., Frontzek, M., Savici, A.T., Sala, G., Ehlers, G., Christianson, A.D., Lumsden, M.D., Podlesnyak, A.

Low dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S = 1/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as spinons, carry fractional spin S = 1/2. These fractional modes can be reconfined by the application of a staggered magnetic field. Even though considerable progress has been made in the theoretical understanding of such magnets, experimental realizations of this low-dimensional physics are relatively rare. This is particularly true for rare-earth-based magnets because of the large effective spin anisotropy induced by the combination of strong spin–orbit coupling and crystal field splitting. Here, we demonstrate that the rare-earth perovskite YbAlO3 provides a realization of a quantum spin S = 1/2 chain material exhibiting both quantum critical Tomonaga–Luttinger liquid behavior and spinon confinement–deconfinement transitions in different regions of magnetic field–temperature phase diagram.

Loading...
Thumbnail Image
Item

Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics

2018, Yuan, X., Weyhausen-Brinkmann, F., Martín-Sánchez, J., Piredda, G., Křápek, V., Huo, Y., Huang, H., Schimpf, C., Schmidt, O.G., Edlinger, J., Bester, G., Trotta, R., Rastelli, A.

The optical selection rules in epitaxial quantum dots are strongly influenced by the orientation of their natural quantization axis, which is usually parallel to the growth direction. This configuration is well suited for vertically emitting devices, but not for planar photonic circuits because of the poorly controlled orientation of the transition dipoles in the growth plane. Here we show that the quantization axis of gallium arsenide dots can be flipped into the growth plane via moderate in-plane uniaxial stress. By using piezoelectric strain-actuators featuring strain amplification, we study the evolution of the selection rules and excitonic fine structure in a regime, in which quantum confinement can be regarded as a perturbation compared to strain in determining the symmetry-properties of the system. The experimental and computational results suggest that uniaxial stress may be the right tool to obtain quantum-light sources with ideally oriented transition dipoles and enhanced oscillator strengths for integrated quantum photonics.