Search Results

Now showing 1 - 10 of 98
Loading...
Thumbnail Image
Item

Dynamical studies on the generation of periodic surface structures by femtosecond laser pulses

2013, Rosenfeld, A., Höhm, S., Bonse, J., Krüger, J.

The dynamics of the formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800 nm center wavelength) is studied experimentally using a double pulse experiment with cross polarized pulse sequences and a trans illumination femtosecond time-resolved (0.1 ps - 1 ns) pump-probe diffraction approach. The results in both experiments confirm the importance of the ultrafast energy deposition and the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS.

Loading...
Thumbnail Image
Item

X-ray emission from stainless steel foils irradiated by femtosecond petawatt laser pulses

2018, Alkhimova, M.A., Faenov, A.Ya., Pikuz, T.A., Skobelev, I.Yu., Pikuz, S.A., Nishiuchi, M., Sakaki, H., Pirozhkov, A.S., Sagisaka, S., Dover, N.P., Kondo, Ko., Ogura, K., Fukuda, Y., Kiriyama, H., Esirkepov, T., Bulanov, S V., Andreev, A., Kando, M., Zhidkov, A., Nishitani, K., Miyahara, T., Watanabe, Y., Kodama, R., Kondo, K.

We report about nonlinear growth of x-ray emission intensity emitted from plasma generated by femtosecond petawatt laser pulses irradiating stainless steel foils. X-ray emission intensity increases as ∼ I 4.5 with laser intensity I on a target. High spectrally resolved x-ray emission from front and rear surfaces of 5 μm thickness stainless steel targets were obtained at the wavelength range 1.7-2.1 Å, for the first time in experiments at femtosecond petawatt laser facility J-KAREN-P. Total intensity of front x-ray spectra three times dominates to rear side spectra for maximum laser intensity I ≈ 3.21021 W/cm2. Growth of x-ray emission is mostly determined by contribution of bremsstrahlung radiation that allowed estimating bulk electron plasma temperature for various magnitude of laser intensity on target.

Loading...
Thumbnail Image
Item

Preparation of clay mineral samples for high resolution x-ray imaging

2013, Abbati, G., Seim, C., Legall, H., Stiel, H., Thomas, N., Wilhein, T.

In the development of optimum ceramic materials for plastic forming, it is of fundamental importance to gain insight into the compositions of the clay minerals. Whereas spectroscopic methods are adequate for determining the elemental composition of a given sample, a knowledge of the spatial composition, together with the shape and size of the particles leads to further, valuable insight. This requires an imaging technique such as high resolution X-ray microscopy. In addition, fluorescence spectroscopy provides a viable element mapping technique. Since the fine particle fraction of the materials has a major effect on physical properties like plasticity, the analysis is focused mainly on the smallest particles. To separate these from the bigger agglomerates, the raw material has to pass through several procedures like centrifugation and filtering. After that, one has to deposit a layer of appropriate thickness on to a suitable substrate. These preparative techniques are described here, starting from the clay mineral raw materials and proceeding through to samples that are ready to analyze. First results using high resolution x-ray imaging are shown.

Loading...
Thumbnail Image
Item

Characterization of L21 order in Co2FeSi thin films on GaAs

2013, Jenichen, B., Hentschel, T., Herfort, J., Kong, X., Trampert, A., Zizak, I.

Co2FeSi/GaAs(110) and Co2FeSi/GaAs(-1-1-1)B hybrid structures were grown by molecular-beam epitaxy (MBE) and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The films contain inhomogeneous distributions of ordered L21 and B2 phases. The average stoichiometry could be determined by XRD for calibration of the MBE sources. Diffusion processes lead to inhomogeneities, influencing long-range order. An average L21 ordering of up to 65% was measured by grazing-incidence XRD. Lateral inhomogeneities of the spatial distribution of long-range order in Co2FeSi were imaged using dark-field TEM with superlattice reflections and shown to correspond to variations of the Co/Fe ratio.

Loading...
Thumbnail Image
Item

Nonlinear optical mechanism of forming periodical nanostructures in large bandgap dielectrics

2013, Grunwald, R., Das, S.K., Debroy, A., McGlynn, E., Messaoudi, H.

Nonlinear excitation mechanisms of plasmons and their influence on femtosecond-laser induced sub-wavelength ripple generation on dielectric and semiconducting transparent materials are discussed. The agreement of theoretical and experimental data indicates the relevance of the model.

Loading...
Thumbnail Image
Item

Hausdorff metric BV discontinuity of sweeping processes

2016, Klein, Olaf, Recupero, Vincenzo

Sweeping processes are a class of evolution differential inclusions arising in elastoplasticity and were introduced by J.J. Moreau in the early seventies. The solution operator of the sweeping processes represents a relevant example of rate independent operator. As a particular case we get the so called play operator, which is a typical example of a hysteresis operator. The continuity properties of these operators were studied in several works. In this note we address the continuity with respect to the strict metric in the space of functions of bounded variation with values in the metric space of closed convex subsets of a Hilbert space. We provide counterexamples showing that for all BV-formulations of the sweeping process the corresponding solution operator is not continuous when its domain is endowed with the strict topology of BV and its codomain is endowed with the L1-topology. This is at variance with the play operator which has a BV-extension that is continuous in this case.

Loading...
Thumbnail Image
Item

Hollow square core fiber sensor for physical parameters measurement

2022, Pereira, Diana, Bierlich, Jörg, Kobelke, Jens, Ferreira, Marta S.

The measurement of physical parameters is important in many current applications, since they often rely on these measurands to operate with the due quality and the necessary safety. In this work, a simple and robust optical fiber sensor based on an antiresonant hollow square core fiber (HSCF) is proposed to measure simultaneously temperature, strain, and curvature. The proposed sensor was designed in a transmission configuration where a segment of HSCF, with a 10 mm length, was spliced between two single mode fibers. In this sensor, a cladding modal interference (CMI) and a Mach-Zehnder interference (MZI) are enhanced along with the antiresonance (AR) guidance. All the present mechanisms exhibit different responses towards the physical parameters. For the temperature, sensitivities of 32.8 pm/°C, 18.9 pm/°C, and 15.7 pm/°C were respectively attained for the MZI, AR, and CMI. As for the strain, sensitivities of 0.45 pm/μϵ, -0.93 pm/μϵ, and -2.72 pm/μϵ were acquired for the MZI, AR and CMI respectively. Meanwhile, for the curvature measurements, two regions of analysis were considered. In the first region (0 m-1 - 0.7 m-1) sensitivities of 0.033 nm/m-1, -0.27 nm/m-1, and -2.21 nm/m-1 were achieved, whilst for the second region (0.7 m-1 - 1.5 m-1) sensitivities of 0.067 nm/m-1, -0.63 nm/m-1, and -0.49 nm/m-1 were acquired for the MZI, AR and CMI, respectively.

Loading...
Thumbnail Image
Item

Single-electron transitions in one-dimensional native nanostructures

2014, Reiche, M., Kittler, M., Schmelz, M., Stolz, R., Pippel, E., Uebensee, H., Kermann, M., Ortlepp, T.

Low-temperature measurements proved the existence of a two-dimensional electron gas at defined dislocation arrays in silicon. As a consequence, single-electron transitions (Coulomb blockades) are observed. It is shown that the high strain at dislocation cores modifies the band structure and results in the formation of quantum wells along dislocation lines. This causes quantization of energy levels inducing the formation of Coulomb blockades.

Loading...
Thumbnail Image
Item

Laser-induced surface modification of biopolymers - Micro/nanostructuring and functionalization

2018, Stankova, N.E., Atanasov, P.A., Nedyalkov, N.N., Tatchev, Dr., Kolev, K.N., Valova, E.I., Armyanov, St.A., Grochowska, K., Śliwiński, G., Fukata, N., Hirsch, D., Rauschenbach, B.

The medical-grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial in medicine for preparation of high-tech devices because of its remarkable properties. In this paper, we present experimental results on surface modification of PDMS elastomer by using ultraviolet, visible, and near-infrared ns-laser system and investigation of the chemical composition and the morphological structure inside the treated area in dependence on the processing parameters - wavelength, laser fluence and number of pulses. Remarkable chemical transformations and changes of the morphological structure were observed, resulting in the formation of a highly catalytically active surface, which was successfully functionalized via electroless Ni and Pt deposition by a sensitizing-activation free process. The results obtained are very promising in view of applying the methods of laser-induced micro- and nano-structuring and activation of biopolymers' surface and further electroless metal plating to the preparation of, e.g., multielectrode arrays (MEAs) devices in neural and muscular surface interfacing implantable systems.

Loading...
Thumbnail Image
Item

X-ray spectroscopy of super-intense laser-produced plasmas for the study of nonlinear processes. Comparison with PIC simulations

2017, Dalimier, E., Ya Faenov, A., Oks, E., Angelo, P., Pikuz, T.A., Fukuda, Y., Andreev, A., Koga, J., Sakaki, H., Kotaki, H., Pirozhkov, A., Hayashi, Y., Skobelev, I.Yu., Pikuz, S.A., Kawachi, T., Kando, M., Kondo, K., Zhidkov, A., Tubman, E., Butler, N.M.H., Dance, R.J., Alkhimova, M.A., Booth, N., Green, J., Gregory, C., McKenna, P., Woolsey, N., Kodama, R.

We present X-ray spectroscopic diagnostics in femto-second laser-driven experiments revealing nonlinear phenomena caused by the strong coupling of the laser radiation with the created plasma. Among those nonlinear phenomena, we found the signatures of the Two Plasmon Decay (TPD) instability in a laser-driven CO2 cluster-based plasma by analyzing the Langmuir dips in the profile of the O VIII Lyϵ line, caused by the Langmuir waves created at the high laser intensity 3 1018Wcm-2. With similar laser intensities, we reveal also the nonlinear phenomenon of the Second Harmonic Generation (SHG) of the laser frequency by analyzing the nonlinear phenomenon of satellites of Lyman δ and ϵ lines of Ar XVII. In the case of relativistic laser-plasma interaction we discovered the Parametric Decay Instability (PDI)-induced ion acoustic turbulence produced simultaneously with Langmuir waves via irradiation of thin Si foils by laser intensities of 1021Wcm-2.