Search Results

Now showing 1 - 10 of 74
  • Item
    Human alterations of the terrestrial water cycle through land management
    (Göttingen : Copernicus GmbH, 2008) Rost, S.; Gerten, D.; Heyder, U.
    This study quantifies current and potential future changes in transpiration, evaporation, interception loss and river discharge in response to land use change, irrigation and climate change, by performing several distinct simulations within the consistent hydrology and biosphere modeling framework LPJmL (Lund-Potsdam-Jena managed Land). We distinguished two irrigation simulations: a water limited one in which irrigation was restricted by local renewable water resources (ILIM), and a potential one in which no such limitation was assumed but withdrawals from deep groundwater or remote rivers allowed (IPOT). We found that the effect of historical land use change as compared to potential natural vegetation was pronounced, including a reduction in interception loss and transpiration by 25.9% and 10.6%, respectively, whereas river discharge increased by 6.6% (climate conditions of 1991-2000). Furthermore, we estimated that about 1170km3yr-1 of irrigation water could be withdrawn from local renewable water resources (in ILIM), which resulted in a reduction of river discharge by 1.5%. However, up to 1660km3yr-1 of water withdrawals were required in addition under the assumption that optimal growth of irrigated crops was sustained (IPOT), which resulted in a slight net increase in global river discharge by 2.0% due to return flows. Under the HadCM3 A2 climate and emission scenario, climate change alone will decrease total evapotranspiration by 1.5% and river discharge by 0.9% in 2046-2055 compared to 1991-2000 average due to changes in precipitation patterns, a decrease in global precipitation amount, and the net effect of CO2 fertilization. A doubling of agricultural land in 2046-2055 compared to 1991-2000 average as proposed by the IMAGE land use change scenario will result in a decrease in total evapotranspiration by 2.5% and in an increase in river discharge by 3.9%. That is, the effects of land use change in the future will be comparable in magnitude to the effects of climate change in this particular scenario. On present irrigated areas future water withdrawal will increase especially in regions where climate changes towards warmer and dryer conditions will be pronounced.
  • Item
    Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology
    (Katlenburg-Lindau [u.a.] : Copernicus, 2020) De Oliveira Garcia, Wagner; Amann, Thorben; Hartmann, Jens; Karstens, Kristine; Popp, Alexander; Boysen, Lena R.; Smith, Pete; Goll, Daniel
    Limiting global mean temperature changes to well below 2 °C likely requires a rapid and large-scale deployment of negative emission technologies (NETs). Assessments so far have shown a high potential of biomass-based terrestrial NETs, but only a few assessments have included effects of the commonly found nutrient-deficient soils on biomass production. Here, we investigate the deployment of enhanced weathering (EW) to supply nutrients to areas of afforestation-reforestation and naturally growing forests (AR) and bioenergy grasses (BG) that are deficient in phosphorus (P), besides the impacts on soil hydrology. Using stoichiometric ratios and biomass estimates from two established vegetation models, we calculated the nutrient demand of AR and BG. Insufficient geogenic P supply limits C storage in biomass. For a mean P demand by AR and a lowgeogenic-P-supply scenario, AR would sequester 119 Gt C in biomass; for a high-geogenic-P-supply and low-AR-Pdemand scenario, 187 Gt C would be sequestered in biomass; and for a low geogenic P supply and high AR P demand, only 92 GtC would be accumulated by biomass. An average amount of ∼ 150 Gt basalt powder applied for EW would be needed to close global P gaps and completely sequester projected amounts of 190 Gt C during the years 2006-2099 for the mean AR P demand scenario (2-362 Gt basalt powder for the low-AR-P-demand and for the high-AR-P-demand scenarios would be necessary, respectively). The average potential of carbon sequestration by EW until 2099 is ∼ 12 GtC (∼ 0:2-∼ 27 Gt C) for the specified scenarios (excluding additional carbon sequestration via alkalinity production). For BG, 8 kg basaltm2 a1 might, on average, replenish the exported potassium (K) and P by harvest. Using pedotransfer functions, we show that the impacts of basalt powder application on soil hydraulic conductivity and plant-Available water, to close predicted P gaps, would depend on basalt and soil texture, but in general the impacts are marginal. We show that EW could potentially close the projected P gaps of an AR scenario and nutrients exported by BG harvest, which would decrease or replace the use of industrial fertilizers. Besides that, EW ameliorates the soil's capacity to retain nutrients and soil pH and replenish soil nutrient pools. Lastly, EW application could improve plant-Available-water capacity depending on deployed amounts of rock powder - adding a new dimension to the coupling of land-based biomass NETs with EW. © 2020 Royal Society of Chemistry. All rights reserved.
  • Item
    Consecutive extreme flooding and heat wave in Japan: Are they becoming a norm?
    (Hoboken, NJ : Wiley, 2019) Wang, Simon S.-Y.; Kim, Hyungjun; Coumou, Dim; Yoon, Jin-Ho; Zhao, Lin; Gillies, Robert R.
    [No abstract available]
  • Item
    Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model
    (Göttingen : Copernicus Publ., 2019) Braakhekke, Maarten C.; Doelman, Jonathan C.; Baas, Peter; Müller, Christoph; Schaphoff, Sibyll; Stehfest, Elke; van Vuuren, Detlef P.
    We present an extension of the dynamic global vegetation model, Lund-Potsdam-Jena Managed Land (LPJmL), to simulate planted forests intended for carbon (C) sequestration. We implemented three functional types to simulate plantation trees in temperate, tropical, and boreal climates. The parameters of these functional types were optimized to fit target growth curves (TGCs). These curves represent the evolution of stemwood C over time in typical productive plantations and were derived by combining field observations and LPJmL estimates for equivalent natural forests. While the calibrated model underestimates stemwood C growth rates compared to the TGCs, it represents substantial improvement over using natural forests to represent afforestation. Based on a simulation experiment in which we compared global natural forest versus global forest plantation, we found that forest plantations allow for much larger C uptake rates on the timescale of 100 years, with a maximum difference of a factor of 1.9, around 54 years. In subsequent simulations for an ambitious but realistic scenario in which 650Mha (14% of global managed land, 4.5% of global land surface) are converted to forest over 85 years, we found that natural forests take up 37PgC versus 48PgC for forest plantations. Comparing these results to estimations of C sequestration required to achieve the 2°C climate target, we conclude that afforestation can offer a substantial contribution to climate mitigation. Full evaluation of afforestation as a climate change mitigation strategy requires an integrated assessment which considers all relevant aspects, including costs, biodiversity, and trade-offs with other land-use types. Our extended version of LPJmL can contribute to such an assessment by providing improved estimates of C uptake rates by forest plantations. © 2019 American Institute of Physics Inc.. All rights reserved.
  • Item
    The economically optimal warming limit of the planet
    (Göttingen : Copernicus Publ., 2019) Ueckerd, Falko; Frieler, Katja; Lange, Stefan; Wenz, Leonie; Luderer, Gunnar; Levermann, Anders
    Both climate-change damages and climate-change mitigation will incur economic costs. While the risk of severe damages increases with the level of global warming (Dell et al., 2014; IPCC, 2014b, 2018; Lenton et al., 2008), mitigating costs increase steeply with more stringent warming limits (IPCC, 2014a; Luderer et al., 2013; Rogelj et al., 2015). Here, we show that the global warming limit that minimizes this century's total economic costs of climate change lies between 1.9 and 2°C, if temperature changes continue to impact national economic growth rates as observed in the past and if instantaneous growth effects are neither compensated nor amplified by additional growth effects in the following years. The result is robust across a wide range of normative assumptions on the valuation of future welfare and inequality aversion. We combine estimates of climate-change impacts on economic growth for 186 countries (applying an empirical damage function from Burke et al., 2015) with mitigation costs derived from a state-of-the-art energy-economy-climate model with a wide range of highly resolved mitigation options (Kriegler et al., 2017; Luderer et al., 2013, 2015). Our purely economic assessment, even though it omits non-market damages, provides support for the international Paris Agreement on climate change. The political goal of limiting global warming to "well below 2 degrees" is thus also an economically optimal goal given above assumptions on adaptation and damage persistence. © 2019 Copernicus GmbH. All rights reserved.
  • Item
    The millennial atmospheric lifetime of anthropogenic CO2
    (Dordrecht [u.a.] : Springer, 2008) Archer, D.; Brovkin, V.
    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere. © 2008 The Author(s).
  • Item
    Projections of global warming-induced impacts on winter storm losses in the German private household sector
    (Dordrecht [u.a.] : Springer, 2013) Held, H.; Gerstengarbe, F.-W.; Pardowitz, T.; Pinto, J.G.; Ulbrich, U.; Born, K.; Donat, M.G.; Karremann, M.K.; Leckebusch, G.C.; Ludwig, P.; Nissen, K.M.; Österle, H.; Prahl, B.F.; Werner, P.C.; Befort, D.J.; Burghoff, O.
    We present projections of winter storm-induced insured losses in the German residential building sector for the 21st century. With this aim, two structurally most independent downscaling methods and one hybrid downscaling method are applied to a 3-member ensemble of ECHAM5/MPI-OM1 A1B scenario simulations. One method uses dynamical downscaling of intense winter storm events in the global model, and a transfer function to relate regional wind speeds to losses. The second method is based on a reshuffling of present day weather situations and sequences taking into account the change of their frequencies according to the linear temperature trends of the global runs. The third method uses statistical-dynamical downscaling, considering frequency changes of the occurrence of storm-prone weather patterns, and translation into loss by using empirical statistical distributions. The A1B scenario ensemble was downscaled by all three methods until 2070, and by the (statistical-) dynamical methods until 2100. Furthermore, all methods assume a constant statistical relationship between meteorology and insured losses and no developments other than climate change, such as in constructions or claims management. The study utilizes data provided by the German Insurance Association encompassing 24 years and with district-scale resolution. Compared to 1971-2000, the downscaling methods indicate an increase of 10-year return values (i.e. loss ratios per return period) of 6-35 % for 2011-2040, of 20-30 % for 2041-2070, and of 40-55 % for 2071-2100, respectively. Convolving various sources of uncertainty in one confidence statement (data-, loss model-, storm realization-, and Pareto fit-uncertainty), the return-level confidence interval for a return period of 15 years expands by more than a factor of two. Finally, we suggest how practitioners can deal with alternative scenarios or possible natural excursions of observed losses.
  • Item
    The challenge to detect and attribute effects of climate change on human and natural systems
    (Dordrecht [u.a.] : Springer, 2013) Stone, D.; Auffhammer, M.; Carey, M.; Hansen, G.; Huggel, C.; Cramer, W.; Lobell, D.; Molau, U.; Solow, A.; Tibig, L.; Yohe, G.
    Anthropogenic climate change has triggered impacts on natural and human systems world-wide, yet the formal scientific method of detection and attribution has been only insufficiently described. Detection and attribution of impacts of climate change is a fundamentally cross-disciplinary issue, involving concepts, terms, and standards spanning the varied requirements of the various disciplines. Key problems for current assessments include the limited availability of long-term observations, the limited knowledge on processes and mechanisms involved in changing environmental systems, and the widely different concepts applied in the scientific literature. In order to facilitate current and future assessments, this paper describes the current conceptual framework of the field and outlines a number of conceptual challenges. Based on this, it proposes workable cross-disciplinary definitions, concepts, and standards. The paper is specifically intended to serve as a baseline for continued development of a consistent cross-disciplinary framework that will facilitate integrated assessment of the detection and attribution of climate change impacts.
  • Item
    Stern's Review and Adam's fallacy
    (Dordrecht [u.a.] : Springer, 2008) Jaeger, C.; Schellnhuber, H.J.; Brovkin, V.
    The Stern Review has played an enormous role in making the world of business aware of the challenge of long-term climate change. In order to make real progress on the basis of this awareness, it is important to pay attention to the difference between human suffering and losses of gross domestic product (GDP). The Review has compared climate change to experiences of suffering like World War I. That war, however, hardly affected global GDP. The long-term damages to be expected from business-as-usual greenhouse gas emissions include loss of the coastal cities of the world over the next millennia. This would be an act of unprecedented barbarism, regardless of whether it would slow down economic growth or perhaps even accelerate it. Business leaders worried about climate change need to pay attention to the tensions between ethical and economic concerns. Otherwise, a credibility crisis threatens global climate policy. An important step to establish the credibility needed for effective climate policy will be to gradually move towards a regime where emission permits are auctioned, not handed out as hidden subsidies. The revenues generated by permit auctions should be used to establish a global system of regional climate funds. © 2008 The Author(s).
  • Item
    Freshwater resources under success and failure of the Paris climate agreement
    (Göttingen : Copernicus Publ., 2019) Heinke, Jens; Müller, Christoph; Lannerstad, Mats; Gerten, Dieter; Lucht, Wolfgang
    Population growth will in many regions increase the pressure on water resources and likely increase the number of people affected by water scarcity. In parallel, global warming causes hydrological changes which will affect freshwater supply for human use in many regions. This study estimates the exposure of future population to severe hydrological changes relevant from a freshwater resource perspective at different levels of global mean temperature rise above pre-industrial level (ΔTglob). The analysis is complemented by an assessment of water scarcity that would occur without additional climate change due to population change alone; this is done to identify the population groups that are faced with particularly high adaptation challenges. The results are analysed in the context of success and failure of implementing the Paris Agreement to evaluate how climate mitigation can reduce the future number of people exposed to severe hydrological change. The results show that without climate mitigation efforts, in the year 2100 about 4.9 billion people in the SSP2 population scenario would more likely than not be exposed to severe hydrological change, and about 2.1 billion of them would be faced with particularly high adaptation challenges due to already prevailing water scarcity. Limiting warming to 2 °C by a successful implementation of the Paris Agreement would strongly reduce these numbers to 615 million and 290 million, respectively. At the regional scale, substantial water-related risks remain at 2 °C, with more than 12% of the population exposed to severe hydrological change and high adaptation challenges in Latin America and the Middle East and north Africa region. Constraining δTglob to 1.5 °C would limit this share to about 5% in these regions. ©2019 Author(s).