Search Results

Now showing 1 - 10 of 13
Loading...
Thumbnail Image
Item

Kallikrein-Related Peptidase 6 Is Associated with the Tumour Microenvironment of Pancreatic Ductal Adenocarcinoma

2021, Candido, Juliana B, Maiques, Oscar, Boxberg, Melanie, Kast, Verena, Peerani, Eleonora, Tomás-Bort, Elena, Weichert, Wilko, Sananes, Amiram, Papo, Niv, Magdolen, Viktor, Sanz-Moreno, Victoria, Loessner, Daniela

As cancer-associated factors, kallikrein-related peptidases (KLKs) are components of the tumour microenvironment, which represents a rich substrate repertoire, and considered attractive targets for the development of novel treatments. Standard-of-care therapy of pancreatic cancer shows unsatisfactory results, indicating the need for alternative therapeutic approaches. We aimed to investigate the expression of KLKs in pancreatic cancer and to inhibit the function of KLK6 in pancreatic cancer cells. KLK6, KLK7, KLK8, KLK10 and KLK11 were coexpressed and upregulated in tissues from pancreatic cancer patients compared to normal pancreas. Their high expression levels correlated with each other and were linked to shorter survival compared to low KLK levels. We then validated KLK6 mRNA and protein expression in patient-derived tissues and pancreatic cancer cells. Coexpression of KLK6 with KRT19, αSMA or CD68 was independent of tumour stage, while KLK6 was coexpressed with KRT19 and CD68 in the invasive tumour area. High KLK6 levels in tumour and CD68+ cells were linked to shorter survival. KLK6 inhibition reduced KLK6 mRNA expression, cell metabolic activity and KLK6 secretion and increased the secretion of other serine and aspartic lysosomal proteases. The association of high KLK levels and poor prognosis suggests that inhibiting KLKs may be a therapeutic strategy for precision medicine.

Loading...
Thumbnail Image
Item

A Complementary and Revised View on the N-Acylation of Chitosan with Hexanoyl Chloride

2021, Reis, Berthold, Gerlach, Niklas, Steinbach, Christine, Haro Carrasco, Karina, Oelmann, Marina, Schwarz, Simona, Müller, Martin, Schwarz, Dana

The modification of the biobased polymer chitosan is a broad and widely studied field. Herein, an insight into the hydrophobization of low-molecular-weight chitosan by substitution of amino functionalities with hexanoyl chloride is reported. Thereby, the influence of the pH of the reaction media was investigated. Further, methods for the determination of the degree of substitution based on 1H-NMR, FTIR, and potentiometric titration were compared and discussed regarding their accuracy and precision. 1H-NMR was the most accurate method, while FTIR and the potentiometric titration, though precise and reproducible, underlie the influence of complete protonation and solubility issues. Additionally, the impact of the pH variation during the synthesis on the properties of the samples was investigated by Cd2+ sorption experiments. The adjusted pH values during the synthesis and, therefore, the obtained degrees of substitution possessed a strong impact on the adsorption properties of the final material.

Loading...
Thumbnail Image
Item

New Source of 3D Chitin Scaffolds: The Red Sea Demosponge Pseudoceratina arabica (Pseudoceratinidae, Verongiida)

2019, Shaala, Lamiaa A., Asfour, Hani Z., Youssef, Diaa T.A., Żółtowska-Aksamitowska, Sonia, Wysokowski, Marcin, Tsurkan, Mikhail, Galli, Roberta, Meissner, Heike, Petrenko, Iaroslav, Tabachnick, Konstantin, Ivanenko, Viatcheslav N., Bechmann, Nicole, Muzychka, Lyubov V., Smolii, Oleg B., Martinović, Rajko, Joseph, Yvonne, Jesionowski, Teofil, Ehrlich, Hermann

The bioactive bromotyrosine-derived alkaloids and unique morphologically-defined fibrous skeleton of chitin origin have been found recently in marine demosponges of the order Verongiida. The sophisticated three-dimensional (3D) structure of skeletal chitinous scaffolds supported their use in biomedicine, tissue engineering as well as in diverse modern technologies. The goal of this study was the screening of new species of the order Verongiida to find another renewable source of naturally prefabricated 3D chitinous scaffolds. Special attention was paid to demosponge species, which could be farmed on large scale using marine aquaculture methods. In this study, the demosponge Pseudoceratina arabica collected in the coastal waters of the Egyptian Red Sea was examined as a potential source of chitin for the first time. Various bioanalytical tools including scanning electron microscopy (SEM), fluorescence microscopy, FTIR analysis, Calcofluor white staining, electrospray ionization mass spectrometry (ESI-MS), as well as a chitinase digestion assay were successfully used to confirm the discovery of a-chitin within the skeleton of P. arabica. The current finding should make an important contribution to the field of application of this verongiid sponge as a novel renewable source of biologically-active metabolites and chitin, which are important for development of the blue biotechnology especially in marine oriented biomedicine. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Loading...
Thumbnail Image
Item

Hyaluronan Graft Copolymers Bearing Fatty-Acid Residues as Self-Assembling Nanoparticles for Olanzapine Delivery

2019, Paolino, Marco, Licciardi, Mariano, Savoca, Cristina, Giammona, Gaetano, De Mohac, Laura Modica, Reale, Annalisa, Giuliani, Germano, Komber, Hartmut, Donati, Alessandro, Leone, Gemma, Magnani, Agnese, Anzini, Maurizio, Cappelli, Andrea

In order to evaluate the potential of a technology platform based on hyaluronan copolymers grafted with propargylated ferulate fluorophores (HA-FA-Pg) in the development of drug delivery systems, the propargyl groups of HA-FA-Pg derivatives were employed with oleic acid (OA) or stearic acid (SA) residues across a biocompatible hexa(ethylene glycol) (HEG) spacer. The designed materials (i.e., HA-FA-HEG-OA or HA-FA-HEG-SA) showed clear-cut aggregation features in an aqueous environment, as confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM), generating nanoaggregate systems. In fact, HA-FA-HEG-OA and HA-FA-HEG-SA derivatives showed the property to create self-assembled cytocompatible nanostructured aggregates in water, thanks to the simultaneous presence of hydrophilic portions in the polymeric backbone, such as hyaluronic acid, and hydrophobic portions in the side chains. Furthermore, the designed materials interact with living cells showing a high degree of cytocompatibility. The potential ability of nanosystems to load pharmacologically active molecules was assessed by the physical entrapment of olanzapine into both polymeric systems. The drug loading evaluation demonstrated that the nanoparticles are able to incorporate a good quantity of olanzapine, as well as improve drug solubility, release profile, and cytocompatibility. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Naturally drug-loaded chitin: Isolation and applications

2019, Kovalchuk, Valentine, Voronkina, Alona, Binnewerg, Björn, Schubert, Mario, Muzychka, Liubov, Wysokowski, Marcin, Tsurkan, Mikhail V., Bechmann, Nicole, Petrenko, Iaroslav, Fursov, Andriy, Martinovic, Rajko, Ivanenko, Viatcheslav N., Fromont, Jane, Smolii, Oleg B., Joseph, Yvonne, Giovine, Marco, Erpenbeck, Dirk, Gelinsky, Michael, Springer, Armin, Guan, Kaomei, Bornstein, Stefan R., Ehrlich, Hermann

Naturally occurring three-dimensional (3D) biopolymer-based matrices that can be used in different biomedical applications are sustainable alternatives to various artificial 3D materials. For this purpose, chitin-based structures from marine sponges are very promising substitutes. Marine sponges from the order Verongiida (class Demospongiae) are typical examples of demosponges with well-developed chitinous skeletons. In particular, species belonging to the family Ianthellidae possess chitinous, flat, fan-like fibrous skeletons with a unique, microporous 3D architecture that makes them particularly interesting for applications. In this work, we focus our attention on the demosponge Ianthella flabelliformis (Linnaeus, 1759) for simultaneous extraction of both naturally occurring (“ready-to-use”) chitin scaffolds, and biologically active bromotyrosines which are recognized as potential antibiotic, antitumor, and marine antifouling substances. We show that selected bromotyrosines are located within pigmental cells which, however, are localized within chitinous skeletal fibers of I. flabelliformis. A two-step reaction provides two products: treatment with methanol extracts the bromotyrosine compounds bastadin 25 and araplysillin-I N20 sulfamate, and a subsequent treatment with acetic acid and sodium hydroxide exposes the 3D chitinous scaffold. This scaffold is a mesh-like structure, which retains its capillary network, and its use as a potential drug delivery biomaterial was examined for the first time. The results demonstrate that sponge-derived chitin scaffolds, impregnated with decamethoxine, effectively inhibit growth of the human pathogen Staphylococcus aureus in an agar diffusion assay

Loading...
Thumbnail Image
Item

Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection

2019, Aso, Ester, Martinsson, Isak, Appelhans, Dietmar, Effenberg, Christiane, Benseny-Cases, Nuria, Cladera, Josep, Gouras, Gunnar, Ferrer, Isidre, Klementieva, Oxana

Poly(propylene imine) dendrimers have been shown to be promising 3-dimensional polymers for the use in the pharmaceutical and biomedical applications. Our aims of this study were first, to synthesize a novel type of dendrimer with poly(propylene imine) core and maltose-histidine shell (G4HisMal) assessing if maltose-histidine shell can improve the biocompatibility and the ability to cross the blood-brain barrier, and second, to investigate the potential of G4HisMal to protect Alzheimer disease transgenic mice from memory impairment. Our data demonstrate that G4HisMal has significantly improved biocompatibility and ability to cross the blood-brain barrier in vivo. Therefore, we suggest that a maltose-histidine shell can be used to improve biocompatibility and ability to cross the blood-brain barrier of dendrimers. Moreover, G4HisMal demonstrated properties for synapse and memory protection when administered to Alzheimer disease transgenic mice. Therefore, G4HisMal can be considered as a promising drug candidate to prevent Alzheimer disease via synapse protection. © 2019 The Authors

Loading...
Thumbnail Image
Item

Express method for isolation of ready-to-use 3D chitin scaffolds from aplysina archeri (aplysineidae: verongiida) demosponge

2019, Klinger, Christine, Zółtowska-Aksamitowska, Sonia, Wysokowski, Marcin, Tsurkan, Mikhail V., Galli, Roberta, Petrenko, Iaroslav, Machałowski, Tomasz, Ereskovsky, Alexander, Martinović, Rajko, Muzychka, Lyubov, Smolii, Oleg B., Bechmann, Nicole, Ivanenko, Viatcheslav, Schupp, Peter J., Jesionowski, Teofil, Giovine, Marco, Bornstein, Stefan R., Voronkina, Alona, Ehrlich, Hermann

Sponges are a valuable source of natural compounds and biomaterials for many biotechnological applications. Marine sponges belonging to the order Verongiida are known to contain both chitin and biologically active bromotyrosines. Aplysina archeri (Aplysineidae: Verongiida) is well known to contain bromotyrosines with relevant bioactivity against human and animal diseases. The aim of this study was to develop an express method for the production of naturally prefabricated 3D chitin and bromotyrosine-containing extracts simultaneously. This new method is based on microwave irradiation (MWI) together with stepwise treatment using 1% sodium hydroxide, 20% acetic acid, and 30% hydrogen peroxide. This approach, which takes up to 1 h, made it possible to isolate chitin from the tube-like skeleton of A. archeri and to demonstrate the presence of this biopolymer in this sponge for the first time. Additionally, this procedure does not deacetylate chitin to chitosan and enables the recovery of ready-to-use 3D chitin scaffolds without destruction of the unique tube-like fibrous interconnected structure of the isolated biomaterial. Furthermore, these mechanically stressed fibers still have the capacity for saturation with water, methylene blue dye, crude oil, and blood, which is necessary for the application of such renewable 3D chitinous centimeter-sized scaffolds in diverse technological and biomedical fields. © 2019 by the authors.

Loading...
Thumbnail Image
Item

Electrochemical approach for isolation of chitin from the skeleton of the black coral cirrhipathes sp. (Antipatharia)

2020, Nowacki, Krzysztof, Stępniak, Izabela, Langer, Enrico, Tsurkan, Mikhail, Wysokowski, Marcin, Petrenko, Iaroslav, Khrunyk, Yuliya, Fursov, Andriy, Bo, Marzia, Bavestrello, Giorgio, Joseph, Yvonne, Ehrlich, Hermann

The development of novel and effective methods for the isolation of chitin, which remains one of the fundamental aminopolysaccharides within skeletal structures of diverse marine invertebrates, is still relevant. In contrast to numerous studies on chitin extraction from crustaceans, mollusks and sponges, there are only a few reports concerning its isolation from corals, and especially black corals (Antipatharia). In this work, we report the stepwise isolation and identification of chitin from Cirrhipathes sp. (Antipatharia, Antipathidae) for the first time. The proposed method, aiming at the extraction of the chitinous scaffold from the skeleton of black coral species, combined a well-known chemical treatment with in situ electrolysis, using a concentrated Na2SO4 aqueous solution as the electrolyte. This novel method allows the isolation of a-chitin in the form of a microporous membrane-like material. Moreover, the extracted chitinous scaffold, with a well-preserved, unique pore distribution, has been extracted in an astoundingly short time (12 h) compared to the earlier reported attempts at chitin isolation from Antipatharia corals. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Loading...
Thumbnail Image
Item

First Report on Chitin in a Non-Verongiid Marine Demosponge: The Mycale euplectellioides Case

2018, Żółtowska-Aksamitowska, Sonia, Shaala, Lamiaa A., Youssef, Diaa T.A., Elhady, Sameh S., Tsurkan, Mikhail V., Petrenko, Iaroslav, Wysokowski, Marcin, Tabachnick, Konstantin, Meissner, Heike, Ivanenko, Viatcheslav N., Bechmann, Nicole, Joseph, Yvonne, Jesionowski, Teofil, Ehrlich, Hermann

Sponges (Porifera) are recognized as aquatic multicellular organisms which developed an effective biochemical pathway over millions of years of evolution to produce both biologically active secondary metabolites and biopolymer-based skeletal structures. Among marine demosponges, only representatives of the Verongiida order are known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. The unique three-dimensional (3D) architecture of such chitinous skeletons opens the widow for their recent applications as adsorbents, as well as scaffolds for tissue engineering and biomimetics. This study has the ambitious goal of monitoring other orders beyond Verongiida demosponges and finding alternative sources of naturally prestructured chitinous scaffolds; especially in those demosponge species which can be cultivated at large scales using marine farming conditions. Special attention has been paid to the demosponge Mycale euplectellioides (Heteroscleromorpha: Poecilosclerida: Mycalidae) collected in the Red Sea. For the first time, we present here a detailed study of the isolation of chitin from the skeleton of this sponge, as well as its identification using diverse bioanalytical tools. Calcofluor white staining, Fourier-transform Infrared Spcetcroscopy (FTIR), electrospray ionization mass spectrometry (ESI-MS), scanning electron microscopy (SEM), and fluorescence microscopy, as well as a chitinase digestion assay were applied in order to confirm with strong evidence the finding of a-chitin in the skeleton of M. euplectellioides. We suggest that the discovery of chitin within representatives of the Mycale genus is a promising step in their evaluation of these globally distributed sponges as new renewable sources for both biologically active metabolites and chitin, which are of prospective use for pharmacology and biomaterials oriented biomedicine, respectively.

Loading...
Thumbnail Image
Item

Targeted RNAi of BIRC5/Survivin Using Antibody-Conjugated Poly(Propylene Imine)-Based Polyplexes Inhibits Growth of PSCA-Positive Tumors

2021, Jugel, Willi, Aigner, Achim, Michen, Susanne, Hagstotz, Alexander, Ewe, Alexander, Appelhans, Dietmar, Schackert, Gabriele, Temme, Achim, Tietze, Stefanie

Delivery of siRNAs for the treatment of tumors critically depends on the development of efficient nucleic acid carrier systems. The complexation of dendritic polymers (dendrimers) results in nanoparticles, called dendriplexes, that protect siRNA from degradation and mediate non-specific cellular uptake of siRNA. However, large siRNA doses are required for in vivo use due to accumulation of the nanoparticles in sinks such as the lung, liver, and spleen. This suggests the exploration of targeted nanoparticles for enhancing tumor cell specificity and achieving higher siRNA levels in tumors. In this work, we report on the targeted delivery of a therapeutic siRNA specific for BIRC5/Survivin in vitro and in vivo to tumor cells expressing the surface marker prostate stem cell antigen (PSCA). For this, polyplexes consisting of single-chain antibody fragments specific for PSCA conjugated to siRNA/maltose-modified poly(propylene imine) dendriplexes were used. These polyplexes were endocytosed by PSCA-positive 293TPSCA/ffLuc and PC3PSCA cells and caused knockdown of reporter gene firefly luciferase and Survivin expression, respectively. In a therapeutic study in PC3PSCA xenograft-bearing mice, significant anti-tumor effects were observed upon systemic administration of the targeted polyplexes. This indicates superior anti-tumor efficacy when employing targeted delivery of Survivin-specific siRNA, based on the additive effects of siRNA-mediated Survivin knockdown in combination with scFv-mediated PSCA inhibition.