Search Results

Now showing 1 - 10 of 116
Loading...
Thumbnail Image
Item

Saltwater intrusion under climate change in North-Western Germany - mapping, modelling and management approaches in the projects TOPSOIL and go-CAM

2018, Wiederhold, Helga, Scheer, Wolfgang, Kirsch, Reinhard, Azizur Rahman, M., Ronczka, Mathias, Szymkiewicz, Adam, Sadurski, A., Jaworska-Szulc, B.

Climate change will result in rising sea level and, at least for the North Sea region, in rising groundwater table. This leads to a new balance at the fresh–saline groundwater boundary and a new distribution of saltwater intrusions with strong regional differentiations. These effects are investigated in several research projects funded by the European Union and the German Federal Ministry of Education and Research (BMBF). Objectives and some results from the projects TOPSOIL and go-CAM are presented in this poster.

Loading...
Thumbnail Image
Item

Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change

2017, Fronzek, Stefan, Pirttioja, Nina, Carter, Timothy R., Bindi, Marco, Hoffmann, Holger, Palosuo, Taru, Ruiz-Ramos, Margarita, Tao, Fulu, Trnka, Miroslav, Acutis, Marco, Asseng, Senthold, Baranowski, Piotr, Basso, Bruno, Bodin, Per, Buis, Samuel, Cammarano, Davide, Deligios, Paola, Destain, Marie-France, Dumont, Benjamin, Ewert, Frank, Ferrise, Roberto, François, Louis, Gaiser, Thomas, Hlavinka, Petr, Jacquemin, Ingrid, Kersebaum, Kurt Christian, Kollas, Chris, Krzyszczak, Jaromir, Lorite, Ignacio J., Minet, Julien, Minguez, M. Ines, Montesino, Manuel, Moriondo, Marco, Müller, Christoph, Nendel, Claas, Öztürk, Isik, Perego, Alessia, Rodríguez, Alfredo, Ruane, Alex C., Ruget, Françoise, Sanna, Mattia, Semenov, Mikhail A., Slawinski, Cezary, Stratonovitch, Pierre, Supit, Iwan, Waha, Katharina, Wang, Enli, Wu, Lianhai, Zhao, Zhigan, Rötter, Reimund P.

Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (−2 to +9°C) and precipitation (−50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.

Loading...
Thumbnail Image
Item

Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis

2020, Smith, Steven J., Chateau, Jean, Dorheim, Kalyn, Drouet, Laurent, Durand-Lasserve, Olivier, Fricko, Oliver, Fujimori, Shinichiro, Hanaoka, Tatsuya, Harmsen, Mathijs, Hilaire, Jérôme, Keramidas, Kimon, Klimont, Zbigniew, Luderer, Gunnar, Moura, Maria Cecilia P., Riahi, Keywan, Rogelj, Joeri, Sano, Fuminori, van Vuuren, Detlef P., Wada, Kenichi

The relatively short atmospheric lifetimes of methane (CH4) and black carbon (BC) have focused attention on the potential for reducing anthropogenic climate change by reducing Short-Lived Climate Forcer (SLCF) emissions. This paper examines radiative forcing and global mean temperature results from the Energy Modeling Forum (EMF)-30 multi-model suite of scenarios addressing CH4 and BC mitigation, the two major short-lived climate forcers. Central estimates of temperature reductions in 2040 from an idealized scenario focused on reductions in methane and black carbon emissions ranged from 0.18–0.26 Â°C across the nine participating models. Reductions in methane emissions drive 60% or more of these temperature reductions by 2040, although the methane impact also depends on auxiliary reductions that depend on the economic structure of the model. Climate model parameter uncertainty has a large impact on results, with SLCF reductions resulting in as much as 0.3–0.7 Â°C by 2040. We find that the substantial overlap between a SLCF-focused policy and a stringent and comprehensive climate policy that reduces greenhouse gas emissions means that additional SLCF emission reductions result in, at most, a small additional benefit of ~ 0.1 Â°C in the 2030–2040 time frame. © 2020, Battelle Memorial Institute.

Loading...
Thumbnail Image
Item

Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure

2009, Brovkin, V., Petoukhov, V., Claussen, M., Bauer, E., Archer, D., Jaeger, C.

We use a coupled climate-carbon cycle model of intermediate complexity to investigate scenarios of stratospheric sulfur injections as a measure to compensate for CO2-induced global warming. The baseline scenario includes the burning of 5,000 GtC of fossil fuels. A full compensation of CO2-induced warming requires a load of about 13 MtS in the stratosphere at the peak of atmospheric CO2 concentration. Keeping global warming below 2°C reduces this load to 9 MtS. Compensation of CO 2 forcing by stratospheric aerosols leads to a global reduction in precipitation, warmer winters in the high northern latitudes and cooler summers over northern hemisphere landmasses. The average surface ocean pH decreases by 0.7, reducing the calcifying ability of marine organisms. Because of the millennial persistence of the fossil fuel CO2 in the atmosphere, high levels of stratospheric aerosol loading would have to continue for thousands of years until CO2 was removed from the atmosphere. A termination of stratospheric aerosol loading results in abrupt global warming of up to 5°C within several decades, a vulnerability of the Earth system to technological failure. © 2008 The Author(s).

Loading...
Thumbnail Image
Item

Effects of Drought and Heat on Photosynthetic Performance, Water Use and Yield of Two Selected Fiber Hemp Cultivars at a Poor-Soil Site in Brandenburg (Germany)

2020, Herppich, Werner B., Gusovius, Hans-Jörg, Flemming, Inken, Drastig, Katrin

Hemp currently regains certain importance as fiber, oil and medical crop not least because of its modest requirements of biocides, fertilizer and water. During recent years, crops were exposed to a combination of drought and heat, even in northern Central-Europe. Dynamic responses of photosynthesis and stomatal conductance to these stresses and their persistent effects had been studied, if at all, in controlled environment experiments. Comprehensive field studies on diurnal and long-term net photosynthesis and gas exchange, and yield properties of hemp during a drought prone, high-temperature season in northern Central-Europe are obviously missing. Thus, in whole season field trails, the essential actual physiological (rates of net photosynthesis and transpiration, stomatal conductance, water use efficiencies, ambient and internal CO2 concentrations) and the yield performance of modern high-yielding multi-purpose hemp cultivars, ‘Ivory’ and ‘Santhica 27’, were evaluated under extreme environmental conditions and highly limited soil water supply. This provides comprehensive information on the usability of these cultivars under potential future harsh production conditions. Plants of both cultivars differentially cope with the prevailing climatic and soil water conditions. While ‘Ivory’ plants developed high rates of CO2 gain and established large leaf area per plant in the mid-season, those of ‘Santhica 27’ utilized lower CO2 uptake rates at lower leaf area per plant most time. This and the higher germination success of ‘Santhica 27’ resulted in nearly twice the yield compared to ‘Ivory’. Although stomatal control of CO2 gain was pronounced in both cultivars, higher stomatal limitations in ‘Ivory’ plants resulted in higher overall intrinsic water use efficiency. Cultivation of both hemp cultivars with only basic irrigation during seed germination was successful and without large effects on yield and quality. This was valid even under extremely hot and dry climatic conditions in northern Central Europe.

Loading...
Thumbnail Image
Item

Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model

2019, Braakhekke, Maarten C., Doelman, Jonathan C., Baas, Peter, Müller, Christoph, Schaphoff, Sibyll, Stehfest, Elke, van Vuuren, Detlef P.

We present an extension of the dynamic global vegetation model, Lund-Potsdam-Jena Managed Land (LPJmL), to simulate planted forests intended for carbon (C) sequestration. We implemented three functional types to simulate plantation trees in temperate, tropical, and boreal climates. The parameters of these functional types were optimized to fit target growth curves (TGCs). These curves represent the evolution of stemwood C over time in typical productive plantations and were derived by combining field observations and LPJmL estimates for equivalent natural forests. While the calibrated model underestimates stemwood C growth rates compared to the TGCs, it represents substantial improvement over using natural forests to represent afforestation. Based on a simulation experiment in which we compared global natural forest versus global forest plantation, we found that forest plantations allow for much larger C uptake rates on the timescale of 100 years, with a maximum difference of a factor of 1.9, around 54 years. In subsequent simulations for an ambitious but realistic scenario in which 650Mha (14% of global managed land, 4.5% of global land surface) are converted to forest over 85 years, we found that natural forests take up 37PgC versus 48PgC for forest plantations. Comparing these results to estimations of C sequestration required to achieve the 2°C climate target, we conclude that afforestation can offer a substantial contribution to climate mitigation. Full evaluation of afforestation as a climate change mitigation strategy requires an integrated assessment which considers all relevant aspects, including costs, biodiversity, and trade-offs with other land-use types. Our extended version of LPJmL can contribute to such an assessment by providing improved estimates of C uptake rates by forest plantations. © 2019 American Institute of Physics Inc.. All rights reserved.

Loading...
Thumbnail Image
Item

Increasing risks of apple tree frost damage under climate change

2019, Pfleiderer, Peter, Menke, Inga, Schleussner, Carl-Friedrich

Anthropogenic climate change is affecting agriculture and crop production. The responses of horticultural and agricultural systems to changing climatic conditions can be non-linear and at times counter-intuitive. Depending on the characteristics of the system, the actual impact can arise as a result of a combination of climate hazards or compound events. Here, we show that compound events can lead to increased risk of frost damage for apple fruit trees in Germany in a 2 Â°C warmer world of up to 10% relative to present day. Although the absolute number of frost days is declining, warmer winters also lead to earlier blossom of fruit trees, which in turn can lead to regionally dependent increased risks of the occurrence of frost days after apple blossom. In southern Germany, warmer winters may also lead to an increase in years in which apple yield is negatively affected by a lack of sufficient amount of cold days to trigger the seasonal response of the trees. Our results show how cropping system responses to seasonal climate can lead to unexpected effects of increased risk of frost damage as a result of warmer winters. An improved understanding of ecosystem responses to changes in climate signals is important to fully assess the impacts of climate change. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

Assessment of climate change and associated impact on selected sectors in Poland

2018, Kundzewicz, Zbigniew W., Piniewski, Mikołaj, Mezghani, Abdelkader, Okruszko, Tomasz, Pińskwar, Iwona, Kardel, Ignacy, Hov, Øystein, Szcześniak, Mateusz, Szwed, Małgorzata, Benestad, Rasmus E., Marcinkowski, Paweł, Graczyk, Dariusz, Dobler, Andreas, Førland, Eirik J., O’Keefe, Joanna, Choryński, Adam, Parding, Kajsa M., Haugen, Jan Erik

The present paper offers a brief assessment of climate change and associated impact in Poland, based on selected results of the Polish–Norwegian CHASE-PL project. Impacts are examined in selected sectors, such as water resources, natural hazard risk reduction, environment, agriculture and health. Results of change detection in long time series of observed climate and climate impact variables in Poland are presented. Also, projections of climate variability and change are provided for time horizons of 2021–2050 and 2071–2100 for two emission scenarios, RCP4.5 and RCP8.5 in comparison with control period, 1971–2000. Based on climate projections, examination of future impacts on sectors is also carried out. Selected uncertainty issues relevant to observations, understanding and projections are tackled as well.

Loading...
Thumbnail Image
Item

Overview: The Baltic Earth Assessment Reports (BEAR)

2023, Meier, H. E. Markus, Reckermann, Marcus, Langner, Joakim, Smith, Ben, Didenkulova, Ira

Baltic Earth is an independent research network of scientists from all Baltic Sea countries that promotes regional Earth system research. Within the framework of this network, the Baltic Earth Assessment Reports (BEARs) were produced in the period 2019-2022. These are a collection of 10 review articles summarising current knowledge on the environmental and climatic state of the Earth system in the Baltic Sea region and its changes in the past (palaeoclimate), present (historical period with instrumental observations) and prospective future (until 2100) caused by natural variability, climate change and other human activities. The division of topics among articles follows the grand challenges and selected themes of the Baltic Earth Science Plan, such as the regional water, biogeochemical and carbon cycles; extremes and natural hazards; sea-level dynamics and coastal erosion; marine ecosystems; coupled Earth system models; scenario simulations for the regional atmosphere and the Baltic Sea; and climate change and impacts of human use. Each review article contains an introduction, the current state of knowledge, knowledge gaps, conclusions and key messages; the latter are the bases on which recommendations for future research are made. Based on the BEARs, Baltic Earth has published an information leaflet on climate change in the Baltic Sea as part of its outreach work, which has been published in two languages so far, and organised conferences and workshops for stakeholders, in collaboration with the Baltic Marine Environment Protection Commission (Helsinki Commission, HELCOM).

Loading...
Thumbnail Image
Item

The challenge to detect and attribute effects of climate change on human and natural systems

2013, Stone, D., Auffhammer, M., Carey, M., Hansen, G., Huggel, C., Cramer, W., Lobell, D., Molau, U., Solow, A., Tibig, L., Yohe, G.

Anthropogenic climate change has triggered impacts on natural and human systems world-wide, yet the formal scientific method of detection and attribution has been only insufficiently described. Detection and attribution of impacts of climate change is a fundamentally cross-disciplinary issue, involving concepts, terms, and standards spanning the varied requirements of the various disciplines. Key problems for current assessments include the limited availability of long-term observations, the limited knowledge on processes and mechanisms involved in changing environmental systems, and the widely different concepts applied in the scientific literature. In order to facilitate current and future assessments, this paper describes the current conceptual framework of the field and outlines a number of conceptual challenges. Based on this, it proposes workable cross-disciplinary definitions, concepts, and standards. The paper is specifically intended to serve as a baseline for continued development of a consistent cross-disciplinary framework that will facilitate integrated assessment of the detection and attribution of climate change impacts.