Search Results

Now showing 1 - 10 of 12
  • Item
    Solvent-antisolvent interactions in metal halide perovskites
    (Cambridge : Soc., 2023) Bautista-Quijano, Jose Roberto; Telschow, Oscar; Paulus, Fabian; Vaynzof, Yana
    The fabrication of metal halide perovskite films using the solvent-engineering method is increasingly common. In this method, the crystallisation of the perovskite layer is triggered by the application of an antisolvent during the spin-coating of a perovskite precursor solution. Herein, we introduce the current state of understanding of the processes involved in the crystallisation of perovskite layers formed by solvent engineering, focusing in particular on the role of antisolvent properties and solvent-antisolvent interactions. By considering the impact of the Hansen solubility parameters, we propose guidelines for selecting the appropriate antisolvent and outline open questions and future research directions for the fabrication of perovskite films by this method.
  • Item
    Crystalline Carbosilane-Based Block Copolymers: Synthesis by Anionic Polymerization and Morphology Evaluation in the Bulk State
    (Weinheim : Wiley-VCH, 2022) Hübner, Hanna; Niebuur, Bart‐Jan; Janka, Oliver; Gemmer, Lea; Koch, Marcus; Kraus, Tobias; Kickelbick, Guido; Stühn, Bernd; Gallei, Markus
    Block copolymers (BCPs) in the bulk state are known to self-assemble into different morphologies depending on their polymer segment ratio. For polymers with amorphous and crystalline BCP segments, the crystallization process can be influenced significantly by the corresponding bulk morphology. Herein, the synthesis of the amorphous-crystalline BCP poly(dimethyl silacyclobutane)-block-poly(2vinyl pyridine), (PDMSB-b-P2VP), by living anionic polymerization is reported. Polymers with overall molar masses ranging from 17 400 g to 592 200 g mol−1 and PDMSB contents of 4.8–83.9 vol% are synthesized and characterized by size-exclusion chromatography and NMR spectroscopy. The bulk morphology of the obtained polymers is investigated by means of transmission electron microscopy and small angle X-ray scattering, revealing a plethora of self-assembled structures, providing confined and nonconfined conditions. Subsequently, the influence of the previously determined morphologies and their resulting confinement on the crystallinity and crystallization behavior of PDMSB is analyzed via differential scanning calorimetry and powder X-ray diffraction. Here, fractionated crystallization and supercooling effects are observable as well as different diffraction patterns of the PDMSB crystallites for confined and nonconfined domains.
  • Item
    Promoting abnormal grain growth in Fe-based shape memory alloys through compositional adjustments
    (London : Nature Publishing Group, 2019) Vollmer, M.; Arold, T.; Kriegel, M.J.; Klemm, V.; Degener, S.; Freudenberger, J.; Niendorf, T.
    Iron-based shape memory alloys are promising candidates for large-scale structural applications due to their cost efficiency and the possibility of using conventional processing routes from the steel industry. However, recently developed alloy systems like Fe–Mn–Al–Ni suffer from low recoverability if the grains do not completely cover the sample cross-section. To overcome this issue, here we show that small amounts of titanium added to Fe–Mn–Al–Ni significantly enhance abnormal grain growth due to a considerable refinement of the subgrain sizes, whereas small amounts of chromium lead to a strong inhibition of abnormal grain growth. By tailoring and promoting abnormal grain growth it is possible to obtain very large single crystalline bars. We expect that the findings of the present study regarding the elementary mechanisms of abnormal grain growth and the role of chemical composition can be applied to tailor other alloy systems with similar microstructural features.
  • Item
    Enantiomer-selective magnetization of conglomerates for quantitative chiral separation
    (Berlin : Springer Nature, 2019) Ye, X.; Cui, J.; Li, B.; Li, N.; Wang, R.; Yan, Z.; Tan, J.; Zhang, J.; Wan, X.
    Selective crystallization represents one of the most economical and convenient methods to provide large-scale optically pure chiral compounds. Although significant development has been achieved since Pasteur’s separation of sodium ammonium tartrate in 1848, this method is still fundamentally low efficient (low transformation ratio or high labor). Herein, we describe an enantiomer-selective-magnetization strategy for quantitatively separating the crystals of conglomerates by using a kind of magnetic nano-splitters. These nano-splitters would be selectively wrapped into the S-crystals, leading to the formation of the crystals with different physical properties from that of R-crystals. As a result of efficient separation under magnetic field, high purity chiral compounds (99.2 ee% for R-crystals, 95.0 ee% for S-crystals) can be obtained in a simple one-step crystallization process with a high separation yield (95.1%). Moreover, the nano-splitters show expandability and excellent recyclability. We foresee their great potential in developing chiral separation methods used on different scales. © 2019, The Author(s).
  • Item
    Tuning the interplay between nematicity and spin fluctuations in Na1-x Li x FeAs superconductors
    (London : Nature Publishing Group, 2018) Baek, S.-H.; Bhoi, D.; Nam, W.; Lee, B.; Efremov, D.V.; Büchner, B.; Kim, K.H.
    Strong interplay of spin and charge/orbital degrees of freedom is the fundamental characteristic of the iron-based superconductors (FeSCs), which leads to the emergence of a nematic state as a rule in the vicinity of the antiferromagnetic state. Despite intense debate for many years, however, whether nematicity is driven by spin or orbital fluctuations remains unsettled. Here, by use of transport, magnetization, and 75As nuclear magnetic resonance (NMR) measurements, we show a striking transformation of the relationship between nematicity and spin fluctuations (SFs) in Na1-x Li x FeAs; For x ≤ 0.02, the nematic transition promotes SFs. In contrast, for x ≥ 0.03, the system undergoes a non-magnetic phase transition at a temperature T 0 into a distinct nematic state that suppresses SFs. Such a drastic change of the spin fluctuation spectrum associated with nematicity by small doping is highly unusual, and provides insights into the origin and nature of nematicity in FeSCs.
  • Item
    Structure formation of ultrathin PEO films at solid interfaces-complex pattern formation by dewetting and crystallization
    (Basel : MDPI AG, 2013) Braun, H.-G.; Meyer, E.
    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups.
  • Item
    Solar spectral conversion for improving the photosynthetic activity in algae reactors
    (London : Nature Publishing Group, 2013) Wondraczek, L.; Batentschuk, M.; Schmidt, M.A.; Borchardt, R.; Scheiner, S.; Seemann, B.; Schweizer, P.; Brabec, C.J.
    Sustainable biomass production is expected to be one of the major supporting pillars for future energy supply, as well as for renewable material provision. Algal beds represent an exciting resource for biomass/biofuel, fine chemicals and CO2 storage. Similar to other solar energy harvesting techniques, the efficiency of algal photosynthesis depends on the spectral overlap between solar irradiation and chloroplast absorption. Here we demonstrate that spectral conversion can be employed to significantly improve biomass growth and oxygen production rate in closed-cycle algae reactors. For this purpose, we adapt a photoluminescent phosphor of the type Ca 0.59Sr0.40Eu0.01S, which enables efficient conversion of the green part of the incoming spectrum into red light to better match the Qy peak of chlorophyll b. Integration of a Ca 0.59Sr0.40Eu0.01S backlight converter into a flat panel algae reactor filled with Haematococcus pluvialis as a model species results in significantly increased photosynthetic activity and algae reproduction rate.
  • Item
    Amorphous martensite in β-Ti alloys
    (London : Nature Publishing Group, 2018) Zhang, L.; Zhang, H.; Ren, X.; Eckert, J.; Wang, Y.; Zhu, Z.; Gemming, T.; Pauly, S.
    Martensitic transformations originate from a rigidity instability, which causes a crystal to change its lattice in a displacive manner. Here, we report that the martensitic transformation on cooling in Ti-Zr-Cu-Fe alloys yields an amorphous phase instead. Metastable β-Ti partially transforms into an intragranular amorphous phase due to local lattice shear and distortion. The lenticular amorphous plates, which very much resemble α′/α″ martensite in conventional Ti alloys, have a well-defined orientation relationship with the surrounding β-Ti crystal. The present solid-state amorphization process is reversible, largely cooling rate independent and constitutes a rare case of congruent inverse melting. The observed combination of elastic softening and local lattice shear, thus, is the unifying mechanism underlying both martensitic transformations and catastrophic (inverse) melting. Not only do we reveal an alternative mechanism for solid-state amorphization but also establish an explicit experimental link between martensitic transformations and catastrophic melting.
  • Item
    Localized crystallization in shear bands of a metallic glass
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Yan, Zhijie; Song, Kaikai; Hu, Yong; Dai, Fuping; Chu, Zhibing; Eckert, Jürgen
    Stress-induced viscous flow is the characteristic of atomic movements during plastic deformation of metallic glasses in the absence of substantial temperature increase, which suggests that stress state plays an important role in mechanically induced crystallization in a metallic glass. However, it is poorly understood. Here, we report on the stress-induced localized crystallization in individual shear bands of Zr60Al15Ni25 metallic glass subjected to cold rolling. We find that crystallization in individual shear bands preferentially occurs in the regions neighboring the amorphous matrix, where the materials are subjected to compressive stresses demonstrated by our finite element simulations. Our results provide direct evidence that the mechanically induced crystallization kinetics is closely related with the stress state. The crystallization kinetics under compressive and tensile stresses are interpreted within the frameworks of potential energy landscape and classical nucleation theory, which reduces the role of stress state in mechanically induced crystallization in a metallic glass.
  • Item
    Impact of the precursor chemistry and process conditions on the cell-to-cell variability in 1T-1R based HfO2 RRAM devices
    (London : Nature Publishing Group, 2018) Grossi, A.; Perez, E.; Zambelli, C.; Olivo, P.; Miranda, E.; Roelofs, R.; Woodruff, J.; Raisanen, P.; Li, W.; Givens, M.; Costina, I.; Schubert, M.A.; Wenger, C.
    The Resistive RAM (RRAM) technology is currently in a level of maturity that calls for its integration into CMOS compatible memory arrays. This CMOS integration requires a perfect understanding of the cells performance and reliability in relation to the deposition processes used for their manufacturing. In this paper, the impact of the precursor chemistries and process conditions on the performance of HfO2 based memristive cells is studied. An extensive characterization of HfO2 based 1T1R cells, a comparison of the cell-to-cell variability, and reliability study is performed. The cells’ behaviors during forming, set, and reset operations are monitored in order to relate their features to conductive filament properties and process-induced variability of the switching parameters. The modeling of the high resistance state (HRS) is performed by applying the Quantum-Point Contact model to assess the link between the deposition condition and the precursor chemistry with the resulting physical cells characteristics.