Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China

2018, Chen, Jie, Wu, Zhijun, Augustin-Bauditz, Stefanie, Grawe, Sarah, Hartmann, Markus, Pei, Xiangyu, Liu, Zirui, Ji, Dongsheng, Wex, Heike

Exceedingly high levels of PM2.5 with complex chemical composition occur frequently in China. It has been speculated whether anthropogenic PM2.5 may significantly contribute to ice-nucleating particles (INP). However, few studies have focused on the ice-nucleating properties of urban particles. In this work, two ice-nucleating droplet arrays have been used to determine the atmospheric number concentration of INP (NINP) in the range from -6 to -25 °C in Beijing. No correlations between NINP and either PM2.5 or black carbon mass concentrations were found, although both varied by more than a factor of 30 during the sampling period. Similarly, there were no correlations between NINP and either total particle number concentration or number concentrations for particles with diameters > 500 nm. Furthermore, there was no clear difference between day and night samples. All these results indicate that Beijing air pollution did not increase or decrease INP concentrations in the examined temperature range above values observed in nonurban areas; hence, the background INP concentrations might not be anthropogenically influenced as far as urban air pollution is concerned, at least in the examined temperature range.

Loading...
Thumbnail Image
Item

Spatial, temporal and source contribution assessments of black carbon over the northern interior of South Africa

2017, Chiloane, Kgaugelo Euphinia, Beukes, Johan Paul, van Zyl, Pieter Gideon, Maritz, Petra, Vakkari, Ville, Josipovic, Miroslav, Venter, Andrew Derick, Jaars, Kerneels, Tiitta, Petri, Kulmala, Markku, Wiedensohler, Alfred, Liousse, Catherine, Mkhatshwa, Gabisile Vuyisile, Ramandh, Avishkar, Laakso, Lauri

After carbon dioxide (CO2), aerosol black carbon (BC) is considered to be the second most important contributor to global warming. This paper presents equivalent black carbon (eBC) (derived from an optical absorption method) data collected from three sites in the interior of South Africa where continuous measurements were conducted, i.e. Elandsfontein, Welgegund and Marikana, as well elemental carbon (EC) (determined by evolved carbon method) data at five sites where samples were collected once a month on a filter and analysed offline, i.e. Louis Trichardt, Skukuza, Vaal Triangle, Amersfoort and Botsalano. Analyses of eBC and EC spatial mass concentration patterns across the eight sites indicate that the mass concentrations in the South African interior are in general higher than what has been reported for the developed world and that different sources are likely to influence different sites. The mean eBC or EC mass concentrations for the background sites (Welgegund, Louis Trichardt, Skukuza, Botsalano) and sites influenced by industrial activities and/or nearby settlements (Elandsfontein, Marikana, Vaal Triangle and Amersfoort) ranged between 0.7 and 1.1, and 1.3 and 1.4 μg m-3, respectively. Similar seasonal patterns were observed at all three sites where continuous measurement data were collected (Elandsfontein, Marikana and Welgegund), with the highest eBC mass concentrations measured from June to October, indicating contributions from household combustion in the cold winter months (June-August), as well as savannah and grassland fires during the dry season (May to mid-October). Diurnal patterns of eBC at Elandsfontein, Marikana and Welgegund indicated maximum concentrations in the early mornings and late evenings, and minima during daytime. From the patterns it could be deduced that for Marikana and Welgegund, household combustion, as well as savannah and grassland fires, were the most significant sources, respectively. Possible contributing sources were explored in greater detail for Elandsfontein, with five main sources being identified as coal-fired power stations, pyrometallurgical smelters, traffic, household combustion, as well as savannah and grassland fires. Industries on the Mpumalanga Highveld are often blamed for all forms of pollution, due to the NO2 hotspot over this area that is attributed to NOx emissions from industries and vehicle emissions from the Johannesburg. Pretoria megacity. However, a comparison of source strengths indicated that household combustion as well as savannah and grassland fires were the most significant sources of eBC, particularly during winter and spring months, while coal-fired power stations, pyrometallurgical smelters and traffic contribute to eBC mass concentration levels year round.

Loading...
Thumbnail Image
Item

Global analysis of continental boundary layer new particle formation based on long-term measurements

2018, Nieminen, Tuomo, Kerminen, Veli-Matti, Petäjä, Tuukka, Aalto, Pasi P., Arshinov, Mikhail, Asmi, Eija, Baltensperger, Urs, Beddows, David C. S., Beukes, Johan Paul, Collins, Don, Ding, Aijun, Harrison, Roy M., Henzing, Bas, Hooda, Rakesh, Hu, Min, Hõrrak, Urmas, Kivekäs, Niku, Komsaare, Kaupo, Krejci, Radovan, Kristensson, Adam, Laakso, Lauri, Laaksonen, Ari, Leaitch, W. Richard, Lihavainen, Heikki, Mihalopoulos, Nikolaos, Németh, Zoltán, Nie, Wei, O'Dowd, Colin, Salma, Imre, Sellegri, Karine, Svenningsson, Birgitta, Swietlicki, Erik, Tunved, Peter, Ulevicius, Vidmantas, Vakkari, Ville, Vana, Marko, Wiedensohler, Alfred, Wu, Zhijun, Virtanen, Annele, Kulmala, Markku

Atmospheric new particle formation (NPF) is an important phenomenon in terms of global particle number concentrations. Here we investigated the frequency of NPF, formation rates of 10 nm particles, and growth rates in the size range of 10–25 nm using at least 1 year of aerosol number size-distribution observations at 36 different locations around the world. The majority of these measurement sites are in the Northern Hemisphere. We found that the NPF frequency has a strong seasonal variability. At the measurement sites analyzed in this study, NPF occurs most frequently in March–May (on about 30 % of the days) and least frequently in December-February (about 10 % of the days). The median formation rate of 10 nm particles varies by about 3 orders of magnitude (0.01–10 cm−3 s−1) and the growth rate by about an order of magnitude (1–10 nm h−1). The smallest values of both formation and growth rates were observed at polar sites and the largest ones in urban environments or anthropogenically influenced rural sites. The correlation between the NPF event frequency and the particle formation and growth rate was at best moderate among the different measurement sites, as well as among the sites belonging to a certain environmental regime. For a better understanding of atmospheric NPF and its regional importance, we would need more observational data from different urban areas in practically all parts of the world, from additional remote and rural locations in North America, Asia, and most of the Southern Hemisphere (especially Australia), from polar areas, and from at least a few locations over the oceans.

Loading...
Thumbnail Image
Item

The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty

2017, Reddington, C.L., Carslaw, K.S., Stier, P., Schutgens, N., Coe, H., Liu, D., Allan, J., Browse, J., Pringle, K.J., Lee, L.A., Yoshioka, M., Johnson, J.S., Regayre, L.A., Spracklen, D.V., Mann, G.W., Clarke, A., Hermann, M., Henning, S., Wex, H., Kristensen, T.B., Leaitch, W.R., Pöschl, U., Rose, D., Andreae, M.O., Schmale, J., Kondo, Y., Oshima, N., Schwarz, J.P., Nenes, A., Anderson, B., Roberts, G.C., Snider, J.R., Leck, C., Quinn, P.K., Chi, X., Ding, A., Jimenez, J.L., Zhang, Q.

The largest uncertainty in the historical radiative forcing of climate is caused by changes in aerosol particles due to anthropogenic activity. Sophisticated aerosol microphysics processes have been included in many climate models in an effort to reduce the uncertainty. However, the models are very challenging to evaluate and constrain because they require extensive in situ measurements of the particle size distribution, number concentration, and chemical composition that are not available from global satellite observations. The Global Aerosol Synthesis and Science Project (GASSP) aims to improve the robustness of global aerosol models by combining new methodologies for quantifying model uncertainty, to create an extensive global dataset of aerosol in situ microphysical and chemical measurements, and to develop new ways to assess the uncertainty associated with comparing sparse point measurements with low-resolution models. GASSP has assembled over 45,000 hours of measurements from ships and aircraft as well as data from over 350 ground stations. The measurements have been harmonized into a standardized format that is easily used by modelers and nonspecialist users. Available measurements are extensive, but they are biased to polluted regions of the Northern Hemisphere, leaving large pristine regions and many continental areas poorly sampled. The aerosol radiative forcing uncertainty can be reduced using a rigorous model–data synthesis approach. Nevertheless, our research highlights significant remaining challenges because of the difficulty of constraining many interwoven model uncertainties simultaneously. Although the physical realism of global aerosol models still needs to be improved, the uncertainty in aerosol radiative forcing will be reduced most effectively by systematically and rigorously constraining the models using extensive syntheses of measurements.

Loading...
Thumbnail Image
Item

A novel method for deriving the aerosol hygroscopicity parameter based only on measurements from a humidified nephelometer system

2017, Kuang, Ye, Zhao, Chunsheng, Tao, Jiangchuan, Bian, Yuxuan, Ma, Nan, Zhao, Gang

Aerosol hygroscopicity is crucial for understanding roles of aerosol particles in atmospheric chemistry and aerosol climate effects. Light-scattering enhancement factor f (RH, λ) is one of the parameters describing aerosol hygroscopicity, which is defined as f (RH, λ) = δsp(RH, λ)=δsp(dry, λ), where δsp(RH, λ) or δsp(dry, λ) represents δsp at wavelength λ under certain relative humidity (RH) or dry conditions. Traditionally, an overall hygroscopicity parameter κ can be retrieved from measured f (RH, λ), hereinafter referred to as κf(RH), by combining concurrently measured particle number size distribution (PNSD) and mass concentration of black carbon. In this paper, a new method is proposed to directly derive κf(RH) based only on measurements from a three-wavelength humidified nephelometer system. The advantage of this newly proposed approach is that κf(RH) can be estimated without any additional information about PNSD and black carbon. This method is verified with measurements from two different field campaigns. Values of κf(RH) estimated from this new method agree very well with those retrieved by using the traditional method: all points lie near the 1 : 1 line and the square of correlation coefficient between them is 0.99. The verification results demonstrate that this newly proposed method of deriving κf(RH) is applicable at different sites and in seasons of the North China Plain and might also be applicable in other regions around the world.

Loading...
Thumbnail Image
Item

Variability of black carbon mass concentrations, sub-micrometer particle number concentrations and size distributions: results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations

2018, Sun, J., Birmili, W., Hermann, M., Tuch, T., Weinhold, K., Spindler, G., Schladitz, A., Bastian, S., Löschau, G., Cyrys, J., Gu, J., Flentje, H., Briel, B., Asbac, C., Kaminski, H., Ries, L., Sohme, R., Gerwig, H., Wirtz, K., Meinhardt, F., Schwerin, A., Bath, O., Ma, N., Wiedensohler, A.

This work reports the first statistical analysis of multi-annual data on tropospheric aerosols from the German Ultrafine Aerosol Network (GUAN). Compared to other networks worldwide, GUAN with 17 measurement locations has the most sites equipped with particle number size distribution (PNSD) and equivalent black carbon (eBC) instruments and the most site categories in Germany ranging from city street/roadside to High Alpine. As we know, the variations of eBC and particle number concentration (PNC) are influenced by several factors such as source, transformation, transport and deposition. The dominant controlling factor for different pollutant parameters might be varied, leading to the different spatio-temporal variations among the measured parameters. Currently, a study of spatio-temporal variations of PNSD and eBC considering the influences of both site categories and spatial scale is still missing. Based on the multi-site dataset of GUAN, the goal of this study is to investigate how pollutant parameters may interfere with spatial characteristics and site categories. © 2019 The Authors