Search Results

Now showing 1 - 3 of 3
  • Item
    Correction: Electrochemically deposited nanocrystalline InSb thin films and their electrical properties (Journal of Materials Chemistry C (2016) 4 (1345-1350) DOI: 10.1039/C5TC03656A)
    (London : RSC Publ., 2019) Hnida, K.E.; Bäßler, S.; Mech, J.; Szaciłowski, K.; Socha, R.P.; Gajewska, M.; Nielsch, K.; Przybylski, M.; Sulka, G.D.
    There was an error in eqn (3) which was reproduced from the literature and used for the interpretation of the results. The calculations (using the equations from an original work from 1987) were done according the correct version of eqn (3) presented below:. (Table Presented). © 2019 The Royal Society of Chemistry.
  • Item
    Transition to the quantum hall regime in InAs nanowire cross-junctions
    (Bristol : IOP Publ., 2019) Gooth, Johannes; Borg, Mattias; Schmid, Heinz; Bologna, Nicolas; Rossell, Marta D.; Wirths, Stephan; Moselund, Kirsten; Nielsch, Kornelius; Riel, Heike
    We present a low-temperature electrical transport study on four-terminal ballistic InAs nanowire cross-junctions in magnetic fields aligned perpendicular to the cross-plane. Two-terminal longitudinal conductance measurements between opposing contact terminals reveal typical 1D conductance quantization at zero magnetic field. As the magnetic field is applied, the 1D bands evolve into hybrid magneto-electric sub-levels that eventually transform into Landau levels for the widest nanowire devices investigated (width = 100 nm). Hall measurements in a four-terminal configuration on these devices show plateaus in the transverse Hall resistance at high magnetic fields that scale with (ve 2 /h) -1 . e is the elementary charge, h denotes Planck's constant and v is an integer that coincides with the Landau level index determined from the longitudinal conductance measurements. While the 1D conductance quantization in zero magnetic field is fragile against disorder at the NW surface, the plateaus in the Hall resistance at high fields remain robust as expected for a topologically protected Quantum Hall phase. © 2019 IOP Publishing Ltd.
  • Item
    Magnetization Dynamics of an Individual Single-Crystalline Fe-Filled Carbon Nanotube
    (Weinheim : Wiley-VCH, 2019) Lenz, Kilian; Narkowicz, Ryszard; Wagner, Kai; Reiche, Christopher F.; Körner, Julia; Schneider, Tobias; Kákay, Attila; Schultheiss, Helmut; Weissker, Uhland; Wolf, Daniel; Suter, Dieter; Büchner, Bernd; Fassbender, Jürgen; Mühl, Thomas; Lindner, Jürgen
    The magnetization dynamics of individual Fe-filled multiwall carbon-nanotubes (FeCNT), grown by chemical vapor deposition, are investigated by microresonator ferromagnetic resonance (FMR) and Brillouin light scattering (BLS) microscopy and corroborated by micromagnetic simulations. Currently, only static magnetometry measurements are available. They suggest that the FeCNTs consist of a single-crystalline Fe nanowire throughout the length. The number and structure of the FMR lines and the abrupt decay of the spin-wave transport seen in BLS indicate, however, that the Fe filling is not a single straight piece along the length. Therefore, a stepwise cutting procedure is applied in order to investigate the evolution of the ferromagnetic resonance lines as a function of the nanowire length. The results show that the FeCNT is indeed not homogeneous along the full length but is built from 300 to 400 nm long single-crystalline segments. These segments consist of magnetically high quality Fe nanowires with almost the bulk values of Fe and with a similar small damping in relation to thin films, promoting FeCNTs as appealing candidates for spin-wave transport in magnonic applications. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim