Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

Effects of proline substitutions on the thermostable LOV domain from Chloroflexus aggregans

2020, Remeeva, Alina, Nazarenko, Vera V., Goncharov, Ivan M., Yudenko, Anna, Smolentseva, Anastasia, Semenov, Oleg, Kovalev, Kirill, Gülbahar, Cansu, Schwaneberg, Ulrich, Davari, Mehdi D., Gordeliy, Valentin, Gushchin, Ivan

Light-oxygen-voltage (LOV) domains are ubiquitous photosensory modules found in proteins from bacteria, archaea and eukaryotes. Engineered versions of LOV domains have found widespread use in fluorescence microscopy and optogenetics, with improved versions being continuously developed. Many of the engineering efforts focused on the thermal stabilization of LOV domains. Recently, we described a naturally thermostable LOV domain from Chloroflexus aggregans. Here we show that the discovered protein can be further stabilized using proline substitution. We tested the effects of three mutations, and found that the melting temperature of the A95P mutant is raised by approximately 2◦ C, whereas mutations A56P and A58P are neutral. To further evaluate the effects of mutations, we crystallized the variants A56P and A95P, while the variant A58P did not crystallize. The obtained crystal structures do not reveal any alterations in the proteins other than the introduced mutations. Molecular dynamics simulations showed that mutation A58P alters the structure of the respective loop (Aβ-Bβ), but does not change the general structure of the protein. We conclude that proline substitution is a viable strategy for the stabilization of the Chloroflexus aggregans LOV domain. Since the sequences and structures of the LOV domains are overall well-conserved, the effects of the reported mutations may be transferable to other proteins belonging to this family. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

A simple biorefinery concept to produce 2g-lactic acid from Sugar Beet Pulp (SBP): A high-value target approach to valorize awaste stream

2020, De Oliveira, Regiane Alves, Schneider, Roland, Lunelli, Betânia Hoss, Rossell, Carlos Eduardo Vaz, Filho, Rubens Maciel, Venus, Joachim

Lactic acid is a high-value molecule with a vast number of applications. Its production in the biorefineries model is a possibility for this sector to aggregate value to its production chain. Thus, this investigation presents a biorefinery model based on the traditional sugar beet industry proposing an approach to produce lactic acid from a waste stream. Sugar beet is used to produce sugar and ethanol, and the remaining pulp is sent to animal feed. Using Bacillus coagulans in a continuous fermentation, 2781.01 g of lactic acid was produced from 3916.91 g of sugars from hydrolyzed sugar beet pulp, with a maximum productivity of 18.06 g L-1h-1. Without interfering in the sugar production, ethanol, or lactic acid, it is also possible to produce pectin and phenolic compounds in the biorefinery. The lactic acid produced was purified by a bipolar membrane electrodialysis and the recovery reached 788.80 g/L with 98% w/w purity. © 2020 by the authors.

Loading...
Thumbnail Image
Item

Engineering robust cellulases for tailored lignocellulosic degradation cocktails

2020, Contreras, Francisca, Pramanik, Subrata, Rozhkova, Aleksandra M., Zorov, Ivan N., Korotkova, Olga, Sinitsyn, Arkady P., Schwaneberg, Ulrich, Davari, Mehdi D.

Lignocellulosic biomass is a most promising feedstock in the production of second-generation biofuels. Efficient degradation of lignocellulosic biomass requires a synergistic action of several cellulases and hemicellulases. Cellulases depolymerize cellulose, the main polymer of the lignocellulosic biomass, to its building blocks. The production of cellulase cocktails has been widely explored, however, there are still some main challenges that enzymes need to overcome in order to develop a sustainable production of bioethanol. The main challenges include low activity, product inhibition, and the need to perform fine-tuning of a cellulase cocktail for each type of biomass. Protein engineering and directed evolution are powerful technologies to improve enzyme properties such as increased activity, decreased product inhibition, increased thermal stability, improved performance in non-conventional media, and pH stability, which will lead to a production of more efficient cocktails. In this review, we focus on recent advances in cellulase cocktail production, its current challenges, protein engineering as an efficient strategy to engineer cellulases, and our view on future prospects in the generation of tailored cellulases for biofuel production. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Bulk and Single Crystal Growth Progress of Iron-Based Superconductors (FBS): 1111 and 1144

2022, Singh, Shiv J., Sturza, Mihai I.

The discovery of iron-based superconductors (FBS) and their superconducting properties has generated huge research interest and provided a very rich physics high Tc family for fundamental and experimental studies. The 1111 (REFeAsO, RE = Rare earth) and 1144 (AEAFe4As4, AE = Ca, Eu; A = K, Rb) families are the two most important families of FBS, which offer the high Tc of 58 K and 36 K with doping and without doping, respectively. Furthermore, the crystal growth of these families is not an easy process, and a lot of efforts have been reported in this direction. However, the preparation of high-quality and suitable-sized samples is still challenging. In this short review, we will summarize the growth of materials with their superconducting properties, especially polycrystals and single crystals, for the 1111 and 1144 families, and make a short comparison between them to understand the developmental issues.

Loading...
Thumbnail Image
Item

Production of Lactic Acid from Carob, Banana and Sugarcane Lignocellulose Biomass

2020, Azaizeh, Hassan, Abu Tayeh, Hiba N., Schneider, Roland, Klongklaew, Augchararat, Venus, Joachim

Lignocellulosic biomass from agricultural residues is a promising feedstock for lactic acid (LA) production. The aim of the current study was to investigate the production of LA from different lignocellulosic biomass. The LA production from banana peduncles using strain Bacillus coagulans with yeast extract resulted in 26.6 g LA·L-1, and yield of 0.90 g LA·g-1 sugars. The sugarcane fermentation with yeast extract resulted in 46.5 g LA·L-1, and yield of 0.88 g LA·g-1 sugars. Carob showed that addition of yeast extract resulted in higher productivity of 3.2 g LA·L-1·h-1 compared to without yeast extract where1.95 g LA·L-1·h-1 was obtained. Interestingly, similar LA production was obtained by the end where 54.8 and 51.4 g·L-1 were obtained with and without yeast extract, respectively. A pilot scale of 35 L using carob biomass fermentation without yeast extract resulted in yield of 0.84 g LA·g-1 sugars, and productivity of 2.30 g LA·L-1·h-1 which indicate a very promising process for future industrial production of LA.

Loading...
Thumbnail Image
Item

Comparison of finite difference and finite volume simulations for a sc-drying mass transport model

2020, Selmer, Ilka, Farrell, Patricio, Smirnova, Irina, Gurikov, Pavel

Different numerical solutions of a previously developed mass transport model for supercritical drying of aerogel particles in a packed bed [Part 1: Selmer et al. 2018, Part 2: Selmer et al. 2019] are compared. Two finite difference discretizations and a finite volume method were used. The finite volume method showed a higher overall accuracy, in the form of lower overall Euclidean norm (l2) and maximum norm (l∞) errors, as well as lower mole balance errors compared to the finite difference methods. Additionally, the finite volume method was more efficient when the condition numbers of the linear systems to be solved were considered. In case of fine grids, the computation time of the finite difference methods was slightly faster but for 16 or fewer nodes the finite volume method was superior. Overall, the finite volume method is preferable for the numerical solution of the described drying model for aerogel particles in a packed bed. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Exploitation of Ultrasound Technique for Enhancement of Microbial Metabolites Production

2020, Behzadnia, Asma, Moosavi-Nasab, Marzieh, Ojha, Shikha, Tiwari, Brijesh K.

Microbial metabolites have significant impacts on our lives from providing valuable compounds for nutrition to agriculture and healthcare. Ever-growing demand for these natural compounds has led to the need for smart and efficient production techniques. Ultrasound is a multi-applicable technology widely exploited in a range of industries such as chemical, medical, biotechnological, pharmaceutical, and food processes. Depending on the type of ultrasound employed, it can be used to either monitor or drive fermentation processes. Ultrasonication can improve bioproduct productivity via intensifying the performance of living organisms. Controlled ultrasonication can influence the metabolites' biosynthesis efficiency and growth rates by improvement of cell permeability as well as mass transfer and nutrient uptake rates through cell membranes. This review contains a summarized description about suitable microbial metabolites and the applications of ultrasound technique for enhancement of the production of these metabolites as well as the associated downstream processing.

Loading...
Thumbnail Image
Item

Relevance of interactions between starch-based coatings and plum fruit surfaces: A physical-chemical analysis

2019, Basiak, Ewelina, Geyer, Martin, Debeaufort, Frédéric, Lenart, Andrzej, Linke, Manfred

In order to extend the shelf life of the fruit, improve appearance, and to keep all nutrition properties of the plum from diminishing, edible coatings comprised of wheat starch and wheat starch–whey protein isolate (in ratio 80/20) were created. Stand-alone films were produced to assess properties which helped to understand the phenomena occurring on the surface level of coated plums. The properties of coatings based on starch are similar to starch coatings containing oil because the natural epicuticular wax layer of plums merges with coating materials. Adding oil doubled the contact angle value and the dispersive component of the surface tension. The workings of adhesion and cohesion, spreading coefficient, water absorption, water content, and solubility in water of the films decreased. Similar processes were observed on the fruits’ surface. In appearance, the coating process is similar to polishing the plum surface for removing crystalline wax. The color parameters of coated fruits did not significantly change. Newly formed bonds or interactions established between starch, whey proteins, water, glycerol, and oil are displayed by Fourier transform infrared (FTIR) analysis. This work revealed how the interactions between the epicuticular wax on the fruit’s surface and the hydrocolloid-based coatings affect the efficiency of the coatings. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Oligoglycidol-functionalised styrene macromolecules as reactive surfactants in the emulsion polymerisation of styrene: The impact of chain length and concentration on particle size and colloidal stability

2020, Waulthers, Kim, van Zandvoort, Ryan, Castermans, Sam, Welzen, Jeroen, Baeten, Evelien, Stout, Kathleen, Keul, Helmut, Mann, Daniel, Buskens, Pascal

Reactive surfactants (surfmers), which are covalently attached to the surface of sub-micron sized polymer particles during emulsion polymerisation, are applied to tailor the surface functionality of polymer particles for an application of choice. We present a systematic study on the use of oligoglycidol-functionalised styrene macromolecules as surfmers in the emulsion polymerization of styrene. Firstly, we report the impact of the surfmer concentration on the particle size for polymerisations performed above and below the critical micelle concentration. Secondly, we report the influence of the oligoglycidol chain length on the particle size. Thirdly, we conducted experiments to analyse the influence of the surfmer concentration and its chain length on the colloidal stability of the aqueous polystyrene nanoparticles in sodium chloride solutions. We demonstrated that the size of polystyrene particles could be influenced by changing both the surfmer concentration and its chain length. Furthermore, we showed that the colloidal stability of the oligoglycidol-functionalized polystyrene particles is dependent on the particle size, and not directly related to the oligoglycidol chain length. © 2020 by the authors.