Search Results

Now showing 1 - 2 of 2
  • Item
    Metabolic Profiling of Thymic Epithelial Tumors Hints to a Strong Warburg Effect, Glutaminolysis and Precarious Redox Homeostasis as Potential Therapeutic Targets
    (Basel : MDPI, 2022) Alwahsh, Mohammad; Knitsch, Robert; Marchan, Rosemarie; Lambert, Jörg; Hoerner, Christian; Zhang, Xiaonan; Schalke, Berthold; Lee, De-Hyung; Bulut, Elena; Graeter, Thomas; Ott, German; Kurz, Katrin S.; Preissler, Gerhard; Schölch, Sebastian; Farhat, Joviana; Yao, Zhihan; Sticht, Carsten; Ströbel, Philipp; Hergenröder, Roland; Marx, Alexander; Belharazem, Djeda
    Thymomas and thymic carcinomas (TC) are malignant thymic epithelial tumors (TETs) with poor outcome, if non-resectable. Metabolic signatures of TETs have not yet been studied and may offer new therapeutic options. Metabolic profiles of snap-frozen thymomas (WHO types A, AB, B1, B2, B3, n = 12) and TCs (n = 3) were determined by high resolution magic angle spinning 1H nuclear magnetic resonance (HRMAS 1H-NMR) spectroscopy. Metabolite-based prediction of active KEGG metabolic pathways was achieved with MetPA. In relation to metabolite-based metabolic pathways, gene expression signatures of TETs (n = 115) were investigated in the public “The Cancer Genome Atlas” (TCGA) dataset using gene set enrichment analysis. Overall, thirty-seven metabolites were quantified in TETs, including acetylcholine that was not previously detected in other nonendocrine cancers. Metabolite-based cluster analysis distinguished clinically indolent (A, AB, B1) and aggressive TETs (B2, B3, TCs). Using MetPA, six KEGG metabolic pathways were predicted to be activated, including proline/arginine, glycolysis and glutathione pathways. The activated pathways as predicted by metabolite-profiling were generally enriched transcriptionally in the independent TCGA dataset. Shared high lactic acid and glutamine levels, together with associated gene expression signatures suggested a strong “Warburg effect”, glutaminolysis and redox homeostasis as potential vulnerabilities that need validation in a large, independent cohort of aggressive TETs. If confirmed, targeting metabolic pathways may eventually prove as adjunct therapeutic options in TETs, since the metabolic features identified here are known to confer resistance to cisplatin-based chemotherapy, kinase inhibitors and immune checkpoint blockers, i.e., currently used therapies for non-resectable TETs.
  • Item
    FYCO1 Increase and Effect of Arimoclomol–Treatment in Human VCP–Pathology
    (Basel : MDPI, 2022) Guettsches, Anne-Katrin; Meyer, Nancy; Zahedi, René P.; Evangelista, Teresinha; Muentefering, Thomas; Ruck, Tobias; Lacene, Emmanuelle; Heute, Christoph; Gonczarowska-Jorge, Humberto; Schoser, Benedikt; Krause, Sabine; Hentschel, Andreas; Vorgerd, Matthias; Roos, Andreas
    Dominant VCP–mutations cause a variety of neurological manifestations including inclusion body myopathy with early–onset Paget disease and frontotemporal dementia 1 (IBMPFD). VCP encodes a ubiquitously expressed multifunctional protein that is a member of the AAA+ protein family, implicated in multiple cellular functions ranging from organelle biogenesis to ubiquitin–dependent protein degradation. The latter function accords with the presence of protein aggregates in muscle biopsy specimens derived from VCP–patients. Studying the proteomic signature of VCP–mutant fibroblasts, we identified a (pathophysiological) increase of FYCO1, a protein involved in autophagosome transport. We confirmed this finding applying immunostaining also in muscle biopsies derived from VCP–patients. Treatment of fibroblasts with arimoclomol, an orphan drug thought to restore physiologic cellular protein repair pathways, ameliorated cellular cytotoxicity in VCP–patient derived cells. This finding was accompanied by increased abundance of proteins involved in immune response with a direct impact on protein clearaqnce as well as by elevation of pro–survival proteins as unravelled by untargeted proteomic profiling. Hence, the combined results of our study reveal a dysregulation of FYCO1 in the context of VCP–etiopathology, highlight arimoclomol as a potential drug and introduce proteins targeted by the pre–clinical testing of this drug in fibroblasts.