Search Results

Now showing 1 - 2 of 2
  • Item
    Towards efficient production of highly optically pure d-lactic acid from lignocellulosic hydrolysates using newly isolated lactic acid bacteria
    (New York, NY [u.a.] : Elsevier, 2022) Alexandri, Maria; Hübner, Dennis; Schneider, Roland; Fröhling, Antje; Venus, Joachim
    This study presents the production of D-lactic acid with high enantiomeric purity using lignocellulosic hydrolysates from newly isolated lactic acid bacterial (LAB) strains. Six strains, 4 heterofermentative and 2 homofermentative, were investigated for their ability to grow and produce lactic acid on sugar beet pulp (SBP) hydrolysates, containing a mixture of hexose and pentose sugars. Among the strains tested, three were isolates designated as A250, A257 and A15, all of which belonged to the genus Leuconostoc. Only strain A250 could be reliably identified as Leuconostoc pseudomesenteroides based on cluster analysis of Maldi-ToF spectra. All strains produced D-lactic acid in the presence of SBP hydrolysates, but with varying optical purities. The homofermentative strains achieved higher D-lactic acid optical purities, but without assimilating the pentose sugars. Co-cultivation of the homofermentative strain Lactobacillus coryniformis subsp. torquens DSM 20005 together with the heterofermentative isolate A250 led to the production of 21.7 g/L D-lactic acid with 99.3 % optical purity. This strategy enabled the complete sugar utilization of the substrate. Nanofiltration of the SBP hydrolysate enhanced the enantiomeric purity of the D-lactic acid produced from the isolates A250 and A15 by about 5 %. The highest D-lactic acid concentration (40 g/L) was achieved in fed-batch cultures of A250 isolate with nanofiltered SBP, where optical purity was 99.4 %. The results of this study underline the feasibility of a novel isolate as an efficient D-lactic acid producer using lignocellulosic hydrolysates.
  • Item
    Recent advances in d-lactic acid production from renewable resources: Case studies on agro-industrial waste streams
    (Zagreb : Faculty of Food Technology and Biotechnology, University of Zagreb, 2019) Alexandri, Maria; Schneider, Roland; Mehlmann, Kerstin; Venus, Joachim
    The production of biodegradable polymers as alternatives to petroleum-based plastics has gained significant attention in the past years. To this end, polylactic acid (PLA) constitutes a promising alternative, finding various applications from food packaging to pharmaceuticals. Recent studies have shown that d-lactic acid plays a vital role in the production of heat-resistant PLA. At the same time, the utilization of renewable resources is imperative in order to decrease the production cost. This review aims to provide a synopsis of the current state of the art regarding d-lactic acid production via fermentation, focusing on the exploitation of waste and byproduct streams. An overview of potential downstream separation schemes is also given. Additionally, three case studies are presented and discussed, reporting the obtained results utilizing acid whey, coffee mucilage and hydrolysate from rice husks as alternative feedstocks for d-lactic acid production. © 2019, University of Zagreb.