Search Results

Now showing 1 - 9 of 9
  • Item
    State-of-the-art global models underestimate impacts from climate extremes
    ([London] : Nature Publishing Group UK, 2019) Schewe, Jacob; Gosling, Simon N.; Reyer, Christopher; Zhao, Fang; Ciais, Philippe; Elliott, Joshua; Francois, Louis; Huber, Veronika; Lotze, Heike K.; Seneviratne, Sonia I.; van Vliet, Michelle T. H.; Vautard, Robert; Wada, Yoshihide; Breuer, Lutz; Büchner, Matthias; Carozza, David A.; Chang, Jinfeng; Coll, Marta; Deryng, Delphine; de Wit, Allard; Eddy, Tyler D.; Folberth, Christian; Frieler, Katja; Friend, Andrew D.; Gerten, Dieter; Gudmundsson, Lukas; Hanasaki, Naota; Ito, Akihiko; Khabarov, Nikolay; Kim, Hyungjun; Lawrence, Peter; Morfopoulos, Catherine; Müller, Christoph; Müller Schmied, Hannes; Orth, René; Ostberg, Sebastian; Pokhrel, Yadu; Pugh, Thomas A. M.; Sakurai, Gen; Satoh, Yusuke; Schmid, Erwin; Stacke, Tobias; Steenbeek, Jeroen; Steinkamp, Jörg; Tang, Qiuhong; Tian, Hanqin; Tittensor, Derek P.; Volkholz, Jan; Wang, Xuhui; Warszawski, Lila
    Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
  • Item
    Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies
    ([London] : Nature Publishing Group UK, 2019) Luderer, Gunnar; Pehl, Michaja; Arvesen, Anders; Gibon, Thomas; Bodirsky, Benjamin L.; de Boer, Harmen Sytze; Fricko, Oliver; Hejazi, Mohamad; Humpenöder, Florian; Iyer, Gokul; Mima, Silvana; Mouratiadou, Ioanna; Pietzcker, Robert C.; Popp, Alexander; van den Berg, Maarten; van Vuuren, Detlef; Hertwich, Edgar G.
    A rapid and deep decarbonization of power supply worldwide is required to limit global warming to well below 2 °C. Beyond greenhouse gas emissions, the power sector is also responsible for numerous other environmental impacts. Here we combine scenarios from integrated assessment models with a forward-looking life-cycle assessment to explore how alternative technology choices in power sector decarbonization pathways compare in terms of non-climate environmental impacts at the system level. While all decarbonization pathways yield major environmental co-benefits, we find that the scale of co-benefits as well as profiles of adverse side-effects depend strongly on technology choice. Mitigation scenarios focusing on wind and solar power are more effective in reducing human health impacts compared to those with low renewable energy, while inducing a more pronounced shift away from fossil and toward mineral resource depletion. Conversely, non-climate ecosystem damages are highly uncertain but tend to increase, chiefly due to land requirements for bioenergy.
  • Item
    Adaptive responses of animals to climate change are most likely insufficient
    ([London] : Nature Publishing Group UK, 2019) Radchuk, Viktoriia; Reed, Thomas; Teplitsky, Céline; van de Pol, Martijn; Charmantier, Anne; Hassall, Christopher; Adamík, Peter; Adriaensen, Frank; Ahola, Markus P.; Arcese, Peter; Avilés, Jesús Miguel; Balbontin, Javier; Berg, Karl S.; Borras, Antoni; Burthe, Sarah; Clobert, Jean; Dehnhard, Nina; de Lope, Florentino; Dhondt, André A.; Dingemanse, Niels J.; Doi, Hideyuki; Eeva, Tapio; Fickel, Joerns; Filella, Iolanda; Fossøy, Frode; Goodenough, Anne E.; Hall, Stephen J. G.; Hansson, Bengt; Harris, Michael; Hasselquist, Dennis; Hickler, Thomas; Joshi, Jasmin; Kharouba, Heather; Martínez, Juan Gabriel; Mihoub, Jean-Baptiste; Mills, James A.; Molina-Morales, Mercedes; Moksnes, Arne; Ozgul, Arpat; Parejo, Deseada; Pilard, Philippe; Poisbleau, Maud; Rousset, Francois; Rödel, Mark-Oliver; Scott, David; Senar, Juan Carlos; Stefanescu, Constanti; Stokke, Bård G.; Kusano, Tamotsu; Tarka, Maja; Tarwater, Corey E.; Thonicke, Kirsten; Thorley, Jack; Wilting, Andreas; Tryjanowski, Piotr; Merilä, Juha; Sheldon, Ben C.; Pape Møller, Anders; Matthysen, Erik; Janzen, Fredric; Dobson, F. Stephen; Visser, Marcel E.; Beissinger, Steven R.; Courtiol, Alexandre; Kramer-Schadt, Stephanie
    Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species. © 2019, The Author(s).
  • Item
    International comparison of health care carbon footprints
    (Bristol : IOP Publ., 2019) Pichler, Peter-Paul; Jaccard, Ingram S.; Weisz, Ulli; Weisz, Helga
    Climate change confronts the health care sector with a dual challenge. Accumulating climate impacts are putting an increased burden on the service provision of already stressed health care systems in many regions of the world. At the same time, the Paris agreement requires rapid emission reductions in all sectors of the global economy to stay well below the 2 °C target. This study shows that in OECD countries, China, and India, health care on average accounts for 5% of the national CO2 footprint making the sector comparable in importance to the food sector. Some countries have seen reduced CO2 emissions related to health care despite growing expenditures since 2000, mirroring their economy wide emission trends. The average per capita health carbon footprint across the country sample in 2014 was 0.6 tCO2, varying between 1.51 tCO2/cap in the US and 0.06 tCO2/cap in India. A statistical analysis shows that the carbon intensity of the domestic energy system, the energy intensity of the domestic economy, and health care expenditure together explain half of the variance in per capita health carbon footprints. Our results indicate that important leverage points exist inside and outside the health sector. We discuss our findings in the context of the existing literature on the potentials and challenges of reducing GHG emissions in the health and energy sector.
  • Item
    Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C
    (Bristol : IOP Publ., 2019) Stenzel, Fabian; Gerten, Dieter; Werner, Constanze; Jägermeyr, Jonas
    Limiting mean global warming to well below 2 °C will probably require substantial negative emissions (NEs) within the 21st century. To achieve these, bioenergy plantations with subsequent carbon capture and storage (BECCS) may have to be implemented at a large scale. Irrigation of these plantations might be necessary to increase the yield, which is likely to put further pressure on already stressed freshwater systems. Conversely, the potential of bioenergy plantations (BPs) dedicated to achieving NEs through CO2 assimilation may be limited in regions with low freshwater availability. This paper provides a first-order quantification of the biophysical potentials of BECCS as a negative emission technology contribution to reaching the 1.5 °C warming target, as constrained by associated water availabilities and requirements. Using a global biosphere model, we analyze the availability of freshwater for irrigation of BPs designed to meet the projected NEs to fulfill the 1.5 °C target, spatially explicitly on areas not reserved for ecosystem conservation or agriculture. We take account of the simultaneous water demands for agriculture, industries, and households and also account for environmental flow requirements (EFRs) needed to safeguard aquatic ecosystems. Furthermore, we assess to what extent different forms of improved water management on the suggested BPs and on cropland may help to reduce the freshwater abstractions. Results indicate that global water withdrawals for irrigation of BPs range between ∼400 and ∼3000 km3 yr−1, depending on the scenario and the conversion efficiency of the carbon capture and storage process. Consideration of EFRs reduces the NE potential significantly, but can partly be compensated for by improved on-field water management.
  • Item
    Limiting global warming to 1.5 °C will lower increases in inequalities of four hazard indicators of climate change
    (Bristol : IOP Publ., 2019) Shiogama, Hideo; Hasegawa, Tomoko; Fujimori, Shinichiro; Murakami, Daisuke; Takahashi, Kiyoshi; Tanaka, Katsumasa; Emori, Seita; Kubota, Izumi; Abe, Manabu; Imada, Yukiko; Watanabe, Masahiro; Mitchell, Daniel; Schaller, Nathalie; Sillmann, Jana; Fischer, Erich M.; Scinocca, John F.; Bethke, Ingo; Lierhammer, Ludwig; Takakura, Jun’ya; Trautmann, Tim; Döll, Petra; Ostberg, Sebastian; Müller Schmied, Hannes; Saeed, Fahad; Schleussner, Carl-Friedrich
    Clarifying characteristics of hazards and risks of climate change at 2 °C and 1.5 °C global warming is important for understanding the implications of the Paris Agreement. We perform and analyze large ensembles of 2 °C and 1.5 °C warming simulations. In the 2 °C runs, we find substantial increases in extreme hot days, heavy rainfalls, high streamflow and labor capacity reduction related to heat stress. For example, about half of the world's population is projected to experience a present day 1-in-10 year hot day event every other year at 2 °C warming. The regions with relatively large increases of these four hazard indicators coincide with countries characterized by small CO2 emissions, low-income and high vulnerability. Limiting global warming to 1.5 °C, compared to 2 °C, is projected to lower increases in the four hazard indicators especially in those regions.
  • Item
    The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: Quantifying committed climate changes following zero carbon emissions
    (Katlenburg-Lindau : Copernicus, 2019) Jones, Chris D.; Frölicher, Thomas L.; Koven, Charles; MacDougall, Andrew H.; Matthews, H. Damon; Zickfeld, Kirsten; Rogelj, Joeri; Tokarska, Katarzyna B.; Gillett, Nathan P.; Ilyina, Tatiana; Meinshausen, Malte; Mengis, Nadine; Séférian, Roland; Eby, Michael; Burger, Friedrich A.
    The amount of additional future temperature change following a complete cessation of CO2 emissions is a measure of the unrealized warming to which we are committed due to CO2 already emitted to the atmosphere. This “zero emissions commitment” (ZEC) is also an important quantity when estimating the remaining carbon budget – a limit on the total amount of CO2 emissions consistent with limiting global mean temperature at a particular level. In the recent IPCC Special Report on Global Warming of 1.5 ∘C, the carbon budget framework used to calculate the remaining carbon budget for 1.5 ∘C included the assumption that the ZEC due to CO2 emissions is negligible and close to zero. Previous research has shown significant uncertainty even in the sign of the ZEC. To close this knowledge gap, we propose the Zero Emissions Commitment Model Intercomparison Project (ZECMIP), which will quantify the amount of unrealized temperature change that occurs after CO2 emissions cease and investigate the geophysical drivers behind this climate response. Quantitative information on ZEC is a key gap in our knowledge, and one that will not be addressed by currently planned CMIP6 simulations, yet it is crucial for verifying whether carbon budgets need to be adjusted to account for any unrealized temperature change resulting from past CO2 emissions. We request only one top-priority simulation from comprehensive general circulation Earth system models (ESMs) and Earth system models of intermediate complexity (EMICs) – a branch from the 1 % CO2 run with CO2 emissions set to zero at the point of 1000 PgC of total CO2 emissions in the simulation – with the possibility for additional simulations, if resources allow. ZECMIP is part of CMIP6, under joint sponsorship by C4MIP and CDRMIP, with associated experiment names to enable data submissions to the Earth System Grid Federation. All data will be published and made freely available.
  • Item
    Farmer typology to understand differentiated climate change adaptation in Himalaya
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Shukla, Roopam; Agarwal, Ankit; Gornott, Christoph; Sachdeva, Kamna; Joshi, P.K.
    Smallholder farmers’ responses to the climate-induced agricultural changes are not uniform but rather diverse, as response adaptation strategies are embedded in the heterogonous agronomic, social, economic, and institutional conditions. There is an urgent need to understand the diversity within the farming households, identify the main drivers and understand its relationship with household adaptation strategies. Typology construction provides an efficient method to understand farmer diversity by delineating groups with common characteristics. In the present study, based in the Uttarakhand state of Indian Western Himalayas, five farmer types were identified on the basis of resource endowment and agriculture orientation characteristics. Factor analysis followed by sequential agglomerative hierarchial and K-means clustering was use to delineate farmer types. Examination of adaptation strategies across the identified farmer types revealed that mostly contrasting and type-specific bundle of strategies are adopted by farmers to ensure livelihood security. Our findings show that strategies that incurred high investment, such as infrastructural development, are limited to high resource-endowed farmers. In contrast, the low resourced farmers reported being progressively disengaging with farming as a livelihood option. Our results suggest that the proponents of effective adaptation policies in the Himalayan region need to be cognizant of the nuances within the farming communities to capture the diverse and multiple adaptation needs and constraints of the farming households. © 2019, The Author(s).
  • Item
    Medical ethics in the Anthropocene: how are €100 billion of German physicians' pension funds invested?
    (Amsterdam : Elsevier, 2019) Schulz, Christian M.; Ahrend, Klaus-Michael; Schneider, Gerhard; Hohendorf, Gerrit; Schellnhuber, Hans Joachim; Busse, Reinhard
    [No abstract available]