Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Supramolecular organization as a factor of ribonuclease cytotoxicity

2020, Dudkina, Elena V., Ulyanova, Vera V., Ilinskaya, Olga N.

One of the approaches used to eliminate tumor cells is directed destruction/modification of their RNA molecules. In this regard, ribonucleases (RNases) possess a therapeutic potential that remains largely unexplored. It is believed that the biological effects of secreted RNases, namely their antitumor and antiviral properties, derive from their catalytic activity. However, a number of recent studies have challenged the notion that the activity of RNases in the manifestation of selective cytotoxicity towards cancer cells is exclusively an enzymatic one. In this review, we have analyzed available data on the cytotoxic effects of secreted RNases, which are not associated with their catalytic activity, and we have provided evidence that the most important factor in the selective apoptosis-inducing action of RNases is the structural organization of these enzymes, which determines how they interact with cell components. The new idea on the preponderant role of non-catalytic interactions between RNases and cancer cells in the manifestation of selective cytotoxicity will contribute to the development of antitumor RNase-based drugs.

Loading...
Thumbnail Image
Item

3D-Printing of Structure-Controlled Antigen Nanoparticles for Vaccine Delivery

2020, Nishiguchi, Akihiro, Shima, Fumiaki, Singh, Smriti, Akashi, Mitsuru, Moeller, Martin

Targeted delivery of antigens to immune cells using micro/nanocarriers may serve as a therapeutic application for vaccination. However, synthetic carriers have potential drawbacks including cytotoxicity, low encapsulation efficiency of antigen, and lack of a morphological design, which limit the translation of the delivery system to clinical use. Here, we report a carrier-free and three-dimensional (3D)-shape-designed antigen nanoparticle by multiphoton lithography-based 3D-printing. This simple, versatile 3D-printing approach provides freedom for the precise design of particle shapes with a nanoscale resolution. Importantly, shape-designed antigen nanoparticles with distinct aspect ratios show shape-dependent immune responses. The 3D-printing approach for the rational design of nanomaterials with increasing safety, complexity, and efficacy offers an emerging platform to develop vaccine delivery systems and mechanistic understanding.

Loading...
Thumbnail Image
Item

Detecting Bacteria on Wounds with Hyperspectral Imaging in Fluorescence Mode

2020, Hornberger, Christoph., Herrmann, Bert. H., Daeschlein, Georg, Podewils, Sebastian von, Sicher, Claudia, Kuhn, Jana, Masur, Kai, Meister, Mareike, Wahl, Philip

Chronic non-healing wounds represent an increasing problem. In order to enable physicians and nurses to make evidence based decisions on wound treatment, the professional societies call for supporting tools to be offered to physicians. Oxygen supply, bacteria colonization and other parameters influence the healing process. So far, these parameters cannot be monitored in an objective and routinely manner. Existing methods like the microbiological analysis of wound swabs, mean a great deal of effort and partly a long delay. In this paper 42 fluorescence images from 42 patients with diabetic foot ulcer, recorded with a hyperspectral imaging system (TIVITA®), converted for fluorescence imaging, were analysed. Beside the fluorescence images, information about the bacterial colonization is available from microbiological analysis of wound swabs. After preprocessing, principal component analysis, PCA, is used for data analysis with a 405 nm excitation wavelength, the emission wavelength range 510 - 745 nm is used for analysis. After dividing the data into a training and a test dataset it could be shown, that bacteria are detectable in the wound area. A quantification in bacterial colonization counts (BCC) was not in the focus of the research in this study stage.

Loading...
Thumbnail Image
Item

Application of the Phase-Space Path Integral to Strong-Laser-Field-Assisted Electron-Ion Radiative Recombination: A Gauge-Covariant Formulation

2020, Esquembre Kučukalić, Ali, Becker, Wilhelm, Milošević, Dejan B.

We consider the problem of the choice of gauge in nonrelativistic strong-laser-field physics. For this purpose, we use the phase-space path-integral formalism to obtain the momentum-space matrix element of the exact time-evolution operator. With the assumption that the physical transition amplitude corresponds to transitions between eigenstates of the physical energy operator rather than the unperturbed Hamiltonian H0=(−i∂/∂r)2/2+V(r), we prove that the aforementioned momentum-space matrix elements obtained in velocity gauge and length gauge are equal. These results are applied to laser-assisted electron-ion radiative recombination (LAR). The transition amplitude comes out identical in length gauge and velocity gauge, and the expression agrees with the one conventionally obtained in length gauge. In addition to the strong-field approximation (SFA), which is the zeroth-order term of our expansion, we present explicit results for the first-order and the second-order terms, which correspond to LAR preceded by single and double scattering, respectively. Our general conclusion is that in applications to atomic processes in strong-field physics the length-gauge version of the SFA (and its higher-order corrections) should be used. Using the energy operator as the basis-defining Hamiltonian, we have shown that the resulting transition amplitude is gauge invariant and agrees with the form commonly derived in length gauge.

Loading...
Thumbnail Image
Item

Urban nitrogen budgets: flows and stock changes of potentially polluting nitrogen compounds in cities and their surroundings–a review

2020, Winiwarter, Wilfried, Amon, Barbara, Bai, Zhaohai, Greinert, Andrzej, Kaltenegger, Katrin, Ma, Lin, Myszograj, Sylwia, Schneidergruber, Markus, Suchowski-Kisielewicz, Monika, Wolf, Lisa, Zhang, Lin, Zhou, Feng

Concepts of material flow and mass consistency of nitrogen compounds have been used to elucidate nitrogen’s fate in an urban environment. While reactive nitrogen commonly is associated to agriculture and hence to large areas, here we have compiled scientific literature on nitrogen budget approaches in cities, following the central role cities have in anthropogenic activities generally. This included studies that specifically dealt with individual sectors as well as budgets covering all inputs and outputs to and from a city across all sectors and media. In the available data set, a clear focus on Asian cities was noted, making full use of limited information and thus enable to quantitatively describe a local pollution situation. Time series comparisons helped to identify trends, but comparison between cities was hampered by a lack of harmonized methodologies. Some standardization, or at least improved reference to relevant standardized data collection along international norms was considered helpful. Analysis of results available pointed to the following aspects that would reveal additional benchmarks for urban nitrogen budgets: analysing the share of nitrogen that is recycled or reused, separating largely independent sets of nitrogen flows specifically between food nitrogen streams and fossil fuel combustion-related flows, and estimating the stock changes for the whole domain or within individual pools.

Loading...
Thumbnail Image
Item

Plasma-MDS, a metadata schema for plasma science with examples from plasma technology

2020, Franke, Steffen, Paulet, Lucian, Schäfer, Jan, O'Connell, Deborah, Becker, Markus M.

A metadata schema, named Plasma-MDS, is introduced to support research data management in plasma science. Plasma-MDS is suitable to facilitate the publication of research data following the FAIR principles in domain-specific repositories and with this the reuse of research data for data driven plasma science. In accordance with common features in plasma science and technology, the metadata schema bases on the concept to separately describe the source generating the plasma, the medium in which the plasma is operated in, the target the plasma is acting on, and the diagnostics used for investigation of the process under consideration. These four basic schema elements are supplemented by a schema element with various attributes for description of the resources, i.e. the digital data obtained by the applied diagnostic procedures. The metadata schema is first applied for the annotation of datasets published in INPTDAT—the interdisciplinary data platform for plasma technology. © 2020, The Author(s).