Search Results

Now showing 1 - 10 of 38
Loading...
Thumbnail Image
Item

EMT-Induced Cell-Mechanical Changes Enhance Mitotic Rounding Strength

2020, Hosseini, Kamran, Taubenberger, Anna, Werner, Carsten, Fischer-Friedrich, Elisabeth

To undergo mitosis successfully, most animal cells need to acquire a round shape to provide space for the mitotic spindle. This mitotic rounding relies on mechanical deformation of surrounding tissue and is driven by forces emanating from actomyosin contractility. Cancer cells are able to maintain successful mitosis in mechanically challenging environments such as the increasingly crowded environment of a growing tumor, thus, suggesting an enhanced ability of mitotic rounding in cancer. Here, it is shown that the epithelial–mesenchymal transition (EMT), a hallmark of cancer progression and metastasis, gives rise to cell-mechanical changes in breast epithelial cells. These changes are opposite in interphase and mitosis and correspond to an enhanced mitotic rounding strength. Furthermore, it is shown that cell-mechanical changes correlate with a strong EMT-induced change in the activity of Rho GTPases RhoA and Rac1. Accordingly, it is found that Rac1 inhibition rescues the EMT-induced cortex-mechanical phenotype. The findings hint at a new role of EMT in successful mitotic rounding and division in mechanically confined environments such as a growing tumor.

Loading...
Thumbnail Image
Item

The force of MOFs: The potential of switchable metal-organic frameworks as solvent stimulated actuators

2020, Freund, Pascal, Senkovska, Irena, Zheng, Bin, Bon, Volodymyr, Krause, Beate, Maurin, Guillaume, Kaskel, Stefan

We evaluate experimentally the force exerted by flexible metal-organic frameworks through expansion for a representative model system, namely MIL-53(Al). The results obtained are compared with data collected from intrusion experiments while molecular simulations are performed to shed light on the re-opening of the guest-loaded structure. The critical impact of the transition stimulating medium on the magnitude of the expansion force is demonstrated.

Loading...
Thumbnail Image
Item

Transparent model concrete with tunable rheology for investigating flow and particle-migration during transport in pipes

2020, Auernhammer, Günter K., Fataei, Shirin, Haustein, Martin A., Patel, Himanshu P., Schwarze, Rüdiger, Secrieru, Egor, Mechtcherine, Viktor

The article describes the adaption and properties of a model concrete for detailed flow studies. To adapt the yield stress and plastic viscosity of the model concrete to the corresponding rheological properties of real concrete, the model concrete is made of a mixture of glass beads and a non-Newtonian fluid. The refractive index of the non-Newtonian fluid is adjusted to the refractive index of the glass beads by the addition of a further constituent. The rheological properties of the model concrete are characterised by measurements in concrete rheometers. Finally, the first exemplary results from experiments with the model concrete are presented, which give incipient impressions of the complex internal dynamics in flowing concrete.

Loading...
Thumbnail Image
Item

Dry-jet wet spinning of thermally stable lignin-textile grade polyacrylonitrile fibers regenerated from chloride-based ionic liquids compounds

2020, Al Aiti, Muhannad, Das, Amit, Kanerva, Mikko, Järventausta, Maija, Johansson, Petri, Scheffler, Christina, Göbel, Michael, Jehnichen, Dieter, Brünig, Harald, Wulff, Lucas, Boye, Susanne, Arnhold, Kerstin, Kuusipalo, Jurkka, Heinrich, Gert

In this paper, we report on the use of amorphous lignin, a waste by-product of the paper industry, for the production of high performance carbon fibers (CF) as precursor with improved thermal stability and thermo-mechanical properties. The precursor was prepared by blending of lignin with polyacrylonitrile (PAN), which was previously dissolved in an ionic liquid. The fibers thus produced offered very high thermal stability as compared with the fiber consisting of pure PAN. The molecular compatibility, miscibility, and thermal stability of the system were studied by means of shear rheological measurements. The achieved mechanical properties were found to be related to the temperature-dependent relaxation time (consistence parameter) of the spinning dope and the diffusion kinetics of the ionic liquids from the fibers into the coagulation bath. Furthermore, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical tests (DMA) were utilized to understand in-depth the thermal and the stabilization kinetics of the developed fibers and the impact of lignin on the stabilization process of the fibers. Low molecular weight lignin increased the thermally induced physical shrinkage, suggesting disturbing effects on the semi-crystalline domains of the PAN matrix, and suppressed the chemically induced shrinkage of the fibers. The knowledge gained throughout the present paper allows summarizing a novel avenue to develop lignin-based CF designed with adjusted thermal stability.

Loading...
Thumbnail Image
Item

Bioinspired Polydopamine Coating as an Adhesion Enhancer Between Paraffin Microcapsules and an Epoxy Matrix

2020, Fredi, Giulia, Simon, Frank, Sychev, Dmitrii, Melnyk, Inga, Janke, Andreas, Scheffler, Christina, Zimmerer, Cordelia

Microencapsulated phase change materials (PCMs) are attracting increasing attention as functional fillers in polymer matrices, to produce smart thermoregulating composites for applications in thermal energy storage (TES) and thermal management. In a polymer composite, the filler–matrix interfacial adhesion plays a fundamental role in the thermomechanical properties. Hence, this work aims to modify the surface of commercial PCM microcapsules through the formation of a layer of polydopamine (PDA), a bioinspired polymer that is emerging as a powerful tool to functionalize chemically inert surfaces due to its versatility and great adhesive potential in many different materials. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) evidenced that after PDA coating, the surface roughness increased from 9 to 86 nm, which is beneficial, as it allows a further increase in the interfacial interaction by mechanical interlocking. Spectroscopic techniques allowed investigating the surface chemistry and identifying reactive functional groups of the PDA layer and highlighted that, unlike the uncoated microcapsules, the PDA layer is able to react with oxirane groups, thereby forming a covalent bond with the epoxy matrix. Hot-stage optical microscopy and differential scanning calorimetry (DSC) highlighted that the PDA modification does not hinder the melting/crystallization process of the paraffinic core. Finally, SEM micrographs of the cryofracture surface of epoxy composites containing neat or PDA-modified microcapsules clearly evidenced improved adhesion between the capsule shell and the epoxy matrix. These results showed that PDA is a suitable coating material with considerable potential for increasing the interfacial adhesion between an epoxy matrix and polymer microcapsules with low surface reactivity. This is remarkably important not only for this specific application but also for other classes of composite materials. Future studies will investigate how the deposition parameters affect the morphology, roughness, and thickness of the PDA layer and how the layer properties influence the capsule–matrix adhesion.

Loading...
Thumbnail Image
Item

Giant extensional strain of magnetoactive elastomeric cylinders in uniform magnetic fields

2020, Saveliev, Dmitry V., Belyaeva, Inna A., Chashin, Dmitry V., Fetisov, Leonid Y., Romeis, Dirk, Kettl, Wolfgang, Kramarenko, Elena Yu., Saphiannikova, Marina, Stepanov, Gennady V., Shamonin, Mikhail

Elongations of magnetoactive elastomers (MAEs) under ascending-descending uniform magnetic fields were studied experimentally using a laboratory apparatus specifically designed to measure large extensional strains (up to 20%) in compliant MAEs. In the literature, such a phenomenon is usually denoted as giant magnetostriction. The synthesized cylindrical MAE samples were based on polydimethylsiloxane matrices filled with micrometer-sized particles of carbonyl iron. The impact of both the macroscopic shape factor of the samples and their magneto-mechanical characteristics were evaluated. For this purpose, the aspect ratio of the MAE cylindrical samples, the concentration of magnetic particles in MAEs and the effective shear modulus were systematically varied. It was shown that the magnetically induced elongation of MAE cylinders in the maximum magnetic field of about 400 kA/m, applied along the cylinder axis, grew with the increasing aspect ratio. The effect of the sample composition is discussed in terms of magnetic filler rearrangements in magnetic fields and the observed experimental tendencies are rationalized by simple theoretical estimates. The obtained results can be used for the design of new smart materials with magnetic-field-controlled deformation properties, e.g., for soft robotics. © 2020 by the authors.

Loading...
Thumbnail Image
Item

Friction, abrasion and crack growth behavior of in-situ and ex-situ silica filled rubber composites

2020, Vaikuntam, Sankar Raman, Bhagavatheswaran, Eshwaran Subramani, Xiang, Fei, Wießner, Sven, Heinrich, Gert, Das, Amit, Stöckelhuber, Klaus Werner

The article focuses on comparing the friction, abrasion, and crack growth behavior of two different kinds of silica-filled tire tread compounds loaded with (a) in-situ generated alkoxide silica and (b) commercial precipitated silica-filled compounds. The rubber matrix consists of solution styrene butadiene rubber polymers (SSBR). The in-situ generated particles are entirely different in filler morphology, i.e., in terms of size and physical structure, when compared to the precipitated silica. However, both types of the silicas were identified as amorphous in nature. Influence of filler morphology and surface modification of silica on the end performances of the rubbers like dynamic friction, abrasion index, and fatigue crack propagation were investigated. Compared to precipitated silica composites, in-situ derived silica composites offer better abrasion behavior and improved crack propagation with and without admixture of silane coupling agents. Silane modification, particle morphology, and crosslink density were identified as further vital parameters influencing the investigated rubber properties. © 2020 by the authors.

Loading...
Thumbnail Image
Item

DNAzymes as Catalysts for l-Tyrosine and Amyloid β Oxidation

2020, Köhler, Tony, Patsis, Panagiotis A., Hahn, Dominik, Ruland, André, Naas, Carolin, Müller, Martin, Thiele, Julian

Single-stranded deoxyribonucleic acids have an enormous potential for catalysis by applying tailored sequences of nucleotides for individual reaction conditions and substrates. If such a sequence is guanine-rich, it may arrange into a three-dimensional structure called G-quadruplex and give rise to a catalytically active DNA molecule, a DNAzyme, upon addition of hemin. Here, we present a DNAzyme-mediated reaction, which is the oxidation of l-tyrosine toward dityrosine by hydrogen peroxide. With an optimal stoichiometry between DNA and hemin of 1:10, we report an activity of 101.2 ± 3.5 μUnits (μU) of the artificial DNAzyme Dz-00 compared to 33.0 ± 1.8 μU of free hemin. Exemplarily, DNAzymes may take part in neurodegeneration caused by amyloid beta (Aβ) aggregation due to l-tyrosine oxidation. We show that the natural, human genome-derived DNAzyme In1-sp is able to oxidize Aβ peptides with a 4.6% higher yield and a 33.3% higher velocity of the reaction compared to free hemin. As the artificial DNAzyme Dz-00 is even able to catalyze Aβ peptide oxidation with a 64.2% higher yield and 337.1% higher velocity, an in-depth screening of human genome-derived DNAzymes may identify further candidates with similarly high catalytic activity in Aβ peptide oxidation.

Loading...
Thumbnail Image
Item

Thermal annealing to influence the vapor sensing behavior of co-continuous poly(lactic acid)/polystyrene/multiwalled carbon nanotube composites

2020, Li, Yilong, Pionteck, Jürgen, Pötschke, Petra, Voit, Brigitte

With the main purpose of being used as vapor leakage detector, the volatile organic compound (VOC) vapor sensing properties of conductive polymer blend composites were studied. Poly(lactic acid)/polystyrene/multi-walled carbon nanotube (PLA/PS/MWCNT) based conductive polymer composites (CPCs) in which the polymer components exhibit different interactions with the vapors, were prepared by melt mixing. CPCs with a blend composition of 50/50 wt% resulted in the finest co-continuous structure and selective MWCNT localization in PLA. Therefore, these composites were selected for sensor tests. Thermal annealing was applied aiming to maintain the blend structure but improving the sensing reversibility of CPC sensors towards high vapor concentrations. Different sensing protocols were applied using acetone (good solvent for PS and PLA) and cyclohexane (good solvent for PS but poor solvent for PLA) vapors. Increasing acetone vapor concentration resulted in increased relative resistance change (Rrel) of CPCs. Saturated cyclohexane vapor resulted in lower response than nearly saturated acetone vapor. The thermal annealing at 150 °C did not change the blend morphology but increased the PLA crystallinity, making the CPC sensors more resistant to vapor stimulation, resulting in lower Rrel but better reversibility after vapor exposure.

Loading...
Thumbnail Image
Item

A Comprehensive Study about the Role of Crosslink Density on the Tribological Behavior of DLC Coated Rubber

2020, Bayrak, Suleyman, Paulkowski, Dominik, Stöckelhuber, Klaus Werner, Staar, Benjamin, Mayer, Bernd

The friction and wear behavior of coated rubber components is strongly dependent on the substrate properties. This work deals with the impact of the crosslink density, i.e., the hardness of the rubber substrate on the tribological performance of uncoated and coated rubber. The hardness of nitrile butadiene rubber (NBR) is varied altering the sulfur content. Both the uncoated and coated rubber samples are characterized in terms of surface and mechanical properties. Tribological tests comprise the examination of the macroscopic contact area and the temperature in the contact zone. It was found that the functional layer enhances the wear resistance significantly. Apparently, the wear and friction behavior of the coated rubber correlates with the hardness and the bulk properties of the substrate material.