Search Results

Now showing 1 - 10 of 488
  • Item
    Ring-Closure Mechanisms Mediated by Laccase to Synthesize Phenothiazines, Phenoxazines, and Phenazines
    (Washington, DC : ACS Publications, 2020) Hahn, Veronika; Mikolasch, Annett; Weitemeyer, Josephine; Petters, Sebastian; Davids, Timo; Lalk, Michael; Lackmann, Jan-Wilm; Schauer, Frieder
    The green and environmentally friendly synthesis of highly valuable organic substances is one possibility for the utilization of laccases (EC 1.10.3.2). As reactants for the herein described syntheses, different o-substituted arylamines or arylthiols and 2,5-dihydroxybenzoic acid and its derivatives were used. In this way, the formation of phenothiazines, phenoxazines, and phenazines was achieved in aqueous solution mediated by the laccase of Pycnoporus cinnabarinus in the presence of oxygen. Two types of phenothiazines (3-hydroxy- and 3-oxo-phenothiazines) formed in one reaction assay were described for the first time. The cyclization reactions yielded C–N, C–S, or C–O bonds. The syntheses were investigated with regard to the substitution pattern of the reaction partners. Differences in C–S and C–N bond formations without cyclization are discussed.
  • Item
    Sperm Micromotors for Cargo Delivery through Flowing Blood
    (Washington, DC : American Chemical Society, 2020) Xu, Haifeng; Medina-Sánchez, Mariana; Maitz, Manfred F.; Werner, Carsten; Schmidt, Oliver G.
    Micromotors are recognized as promising candidates for untethered micromanipulation and targeted cargo delivery in complex biological environments. However, their feasibility in the circulatory system has been limited due to the low thrust force exhibited by many of the reported synthetic micromotors, which is not sufficient to overcome the high flow and complex composition of blood. Here we present a hybrid sperm micromotor that can actively swim against flowing blood (continuous and pulsatile) and perform the function of heparin cargo delivery. In this biohybrid system, the sperm flagellum provides a high propulsion force while the synthetic microstructure serves for magnetic guidance and cargo transport. Moreover, single sperm micromotors can assemble into a train-like carrier after magnetization, allowing the transport of multiple sperm or medical cargoes to the area of interest, serving as potential anticoagulant agents to treat blood clots or other diseases in the circulatory system.
  • Item
    An OER Recommender System Supporting Accessibility Requirements
    (New York : Association for Computing Machinery, 2020) Elias, Mirette; Tavakoli, Mohammadreza; Lohmann, Steffen; Kismihok, Gabor; Auer, Sören; Gurreiro, Tiago; Nicolau, Hugo; Moffatt, Karyn
    Open Educational Resources are becoming a significant source of learning that are widely used for various educational purposes and levels. Learners have diverse backgrounds and needs, especially when it comes to learners with accessibility requirements. Persons with disabilities have significantly lower employment rates partly due to the lack of access to education and vocational rehabilitation and training. It is not surprising therefore, that providing high quality OERs that facilitate the self-development towards specific jobs and skills on the labor market in the light of special preferences of learners with disabilities is difficult. In this paper, we introduce a personalized OER recommeder system that considers skills, occupations, and accessibility properties of learners to retrieve the most adequate and high-quality OERs. This is done by: 1) describing the profile of learners with disabilities, 2) collecting and analysing more than 1,500 OERs, 3) filtering OERs based on their accessibility features and predicted quality, and 4) providing personalised OER recommendations for learners according to their accessibility needs. As a result, the OERs retrieved by our method proved to satisfy more accessibility checks than other OERs. Moreover, we evaluated our results with five experts in educating people with visual and cognitive impairments. The evaluation showed that our recommendations are potentially helpful for learners with accessibility needs.
  • Item
    Check square at CheckThat! 2020: Claim Detection in Social Media via Fusion of Transformer and Syntactic Features
    (Aachen, Germany : RWTH Aachen, 2020) Cheema, Gullasl S.; Hakimov, Sherzod; Ewerth, Ralph; Cappellato, Linda; Eickhoff, Carsten; Ferro, Nicola; Névéol, Aurélie
    In this digital age of news consumption, a news reader has the ability to react, express and share opinions with others in a highly interactive and fast manner. As a consequence, fake news has made its way into our daily life because of very limited capacity to verify news on the Internet by large companies as well as individuals. In this paper, we focus on solving two problems which are part of the fact-checking ecosystem that can help to automate fact-checking of claims in an ever increasing stream of content on social media. For the first prob-lem, claim check-worthiness prediction, we explore the fusion of syntac-tic features and deep transformer Bidirectional Encoder Representations from Transformers (BERT) embeddings, to classify check-worthiness of a tweet, i.e. whether it includes a claim or not. We conduct a detailed feature analysis and present our best performing models for English and Arabic tweets. For the second problem, claim retrieval, we explore the pre-trained embeddings from a Siamese network transformer model (sentence-transformers) specifically trained for semantic textual similar-ity, and perform KD-search to retrieve verified claims with respect to a query tweet.
  • Item
    PhysioSkin: Rapid Fabrication of Skin-Conformal Physiological Interfaces
    (New York,NY,United States : Association for Computing Machinery, 2020) Nittala, Aditya Shekhar; Khan, Arshad; Kruttwig, Klaus; Kraus, Tobias; Steimle, Jürgen; Bernhaupt, Regina
    Advances in rapid prototyping platforms have made physiological sensing accessible to a wide audience. However, off-the-shelf electrodes commonly used for capturing biosignals are typically thick, non-conformal and do not support customization. We present PhysioSkin, a rapid, do-it-yourself prototyping method for fabricating custom multi-modal physiological sensors, using commercial materials and a commodity desktop inkjet printer. It realizes ultrathin skin-conformal patches (~1μm) and interactive textiles that capture sEMG, EDA and ECG signals. It further supports fabricating devices with custom levels of thickness and stretchability. We present detailed fabrication explorations on multiple substrate materials, functional inks and skin adhesive materials. Informed from the literature, we also provide design recommendations for each of the modalities. Evaluation results show that the sensor patches achieve a high signal-to-noise ratio. Example applications demonstrate the functionality and versatility of our approach for prototyping a next generation of physiological devices that intimately couple with the human body.
  • Item
    Fabrication of a new photo-sensitized solar cell using TiO2\ZnO Nanocomposite synthesized via a modified sol-gel Technique
    (London [u.a.] : Institute of Physics, 2020) Mahdi Rheima, Ahmed; Hadi Hussain, Dhia; Jawad Abed, Hayder
    The current research synthesized was carried out using a modified solgel Technique for titanium dioxide ( TiO2) and zinc oxide (ZnO) nanocomposite. The morphology and optical properties of the synthesized nanocomposite were examined using a transmission electron microscope ( TEM) and UV-Visible spectroscopy. The structure of the synthesized nanocomposite was proved using X-ray Diffraction(XRD). The particle size of the ZnO/TiO2 nanocomposites was found to be range between 11 to 27.37 nm. The product of TEM has proof of the inclusion in the ZnO matrix of spherical TiO2particles. Also found were TiO2 sections attached to the ZnO-like rodlike particles., the ZnO/TiO2 Nanocomposites had better optical absorbing properties. The nanocomposite has been used to create a new photosensitizer solar cell with the efficiency of energy conversion of approximately 4.6%, using (E)-ethyl 4- ((4-nitrobenzylidene)) aminobenzoate as organic photo-sensitized (OPS) by (ITO/TiO2\ZnO nanocomposite/POS/iodine/silver (Ag) nanofilm/ITO).
  • Item
    Nonlinear Optical Characterization of CsPbBr3 Nanocrystals as a Novel Material for the Integration into Electro-Optic Modulators
    (Millersville, PA : Materials Research Forum LLC, 2020) Vitale, Francesco; De Matteis, Fabio; Casalboni, Mauro; Prosposito, Paolo; Steglich, Patrick; Ksianzou, Viachaslau; Breiler, Christian; Schrader, Sigurd; Paci, Barbara; Generosi, Amanda; Prosposito, Paolo
    The present work is concerned with the investigation of the nonlinear optical response of green emissive CsPbBr3 nanocrystals, in the form of colloidal dispersions in toluene, synthesized via a room-temperature ligand-assisted supersaturation recrystallization (LASR) method. After carrying out a preliminary characterization via X-Ray Diffraction (XRD) and Absorption and Photoluminescence (PL) Spectroscopies, the optical nonlinearity of the as-obtained colloids is probed by means of a single-beam Z-scan setup. Results show that the material in question, within the sensitivity of the experimental apparatus, exhibits a nonlinear refractive index n2 that is the order of 10-15 cm2/W. Moreover, a three-photon absorption mechanism (3PA) is postulated, according to the fitting of the recorded Z-scan traces and the fundamental absorption threshold, which turns out to be off resonance with twice the energy of the laser radiation. A figure of merit is, then, calculated as an indicator of the quality of the CsPbBr3 nanocrystals as a candidate material for photonic devices, for instance, Kerr-like electro-optic modulators (EOMs).
  • Item
    EMT-Induced Cell-Mechanical Changes Enhance Mitotic Rounding Strength
    (Weinheim : Wiley-VCH, 2020) Hosseini, Kamran; Taubenberger, Anna; Werner, Carsten; Fischer-Friedrich, Elisabeth
    To undergo mitosis successfully, most animal cells need to acquire a round shape to provide space for the mitotic spindle. This mitotic rounding relies on mechanical deformation of surrounding tissue and is driven by forces emanating from actomyosin contractility. Cancer cells are able to maintain successful mitosis in mechanically challenging environments such as the increasingly crowded environment of a growing tumor, thus, suggesting an enhanced ability of mitotic rounding in cancer. Here, it is shown that the epithelial–mesenchymal transition (EMT), a hallmark of cancer progression and metastasis, gives rise to cell-mechanical changes in breast epithelial cells. These changes are opposite in interphase and mitosis and correspond to an enhanced mitotic rounding strength. Furthermore, it is shown that cell-mechanical changes correlate with a strong EMT-induced change in the activity of Rho GTPases RhoA and Rac1. Accordingly, it is found that Rac1 inhibition rescues the EMT-induced cortex-mechanical phenotype. The findings hint at a new role of EMT in successful mitotic rounding and division in mechanically confined environments such as a growing tumor.
  • Item
    Medical Gas Plasma Jet Technology Targets Murine Melanoma in an Immunogenic Fashion
    (Weinheim : Wiley-VCH, 2020) Bekeschus, Sander; Clemen, Ramona; Nießner, Felix; Sagwal, Sanjeev Kumar; Freund, Eric; Schmidt, Anke
    Medical technologies from physics are imperative in the diagnosis and therapy of many types of diseases. In 2013, a novel cold physical plasma treatment concept was accredited for clinical therapy. This gas plasma jet technology generates large amounts of different reactive oxygen and nitrogen species (ROS). Using a melanoma model, gas plasma technology is tested as a novel anticancer agent. Plasma technology derived ROS diminish tumor growth in vitro and in vivo. Varying the feed gas mixture modifies the composition of ROS. Conditions rich in atomic oxygen correlate with killing activity and elevate intratumoral immune-infiltrates of CD8+ cytotoxic T-cells and dendritic cells. T-cells from secondary lymphoid organs of these mice stimulated with B16 melanoma cells ex vivo show higher activation levels as well. This correlates with immunogenic cancer cell death and higher calreticulin and heat-shock protein 90 expressions induced by gas plasma treatment in melanoma cells. To test the immunogenicity of gas plasma treated melanoma cells, 50% of mice vaccinated with these cells are protected from tumor growth compared to 1/6 and 5/6 mice negative control (mitomycin C) and positive control (mitoxantrone), respectively. Gas plasma jet technology is concluded to provide immunoprotection against malignant melanoma both in vitro and in vivo.
  • Item
    Bioinspired Polydopamine Coating as an Adhesion Enhancer Between Paraffin Microcapsules and an Epoxy Matrix
    (Washington, DC : ACS Publications, 2020) Fredi, Giulia; Simon, Frank; Sychev, Dmitrii; Melnyk, Inga; Janke, Andreas; Scheffler, Christina; Zimmerer, Cordelia
    Microencapsulated phase change materials (PCMs) are attracting increasing attention as functional fillers in polymer matrices, to produce smart thermoregulating composites for applications in thermal energy storage (TES) and thermal management. In a polymer composite, the filler–matrix interfacial adhesion plays a fundamental role in the thermomechanical properties. Hence, this work aims to modify the surface of commercial PCM microcapsules through the formation of a layer of polydopamine (PDA), a bioinspired polymer that is emerging as a powerful tool to functionalize chemically inert surfaces due to its versatility and great adhesive potential in many different materials. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) evidenced that after PDA coating, the surface roughness increased from 9 to 86 nm, which is beneficial, as it allows a further increase in the interfacial interaction by mechanical interlocking. Spectroscopic techniques allowed investigating the surface chemistry and identifying reactive functional groups of the PDA layer and highlighted that, unlike the uncoated microcapsules, the PDA layer is able to react with oxirane groups, thereby forming a covalent bond with the epoxy matrix. Hot-stage optical microscopy and differential scanning calorimetry (DSC) highlighted that the PDA modification does not hinder the melting/crystallization process of the paraffinic core. Finally, SEM micrographs of the cryofracture surface of epoxy composites containing neat or PDA-modified microcapsules clearly evidenced improved adhesion between the capsule shell and the epoxy matrix. These results showed that PDA is a suitable coating material with considerable potential for increasing the interfacial adhesion between an epoxy matrix and polymer microcapsules with low surface reactivity. This is remarkably important not only for this specific application but also for other classes of composite materials. Future studies will investigate how the deposition parameters affect the morphology, roughness, and thickness of the PDA layer and how the layer properties influence the capsule–matrix adhesion.