Search Results

Now showing 1 - 10 of 161
Loading...
Thumbnail Image
Item

Superelasticity of Plasma- and Synthetic Membranes Resulting from Coupling of Membrane Asymmetry, Curvature, and Lipid Sorting

2021, Steinkühler, Jan, Fonda, Piermarco, Bhatia, Tripta, Zhao, Ziliang, Leomil, Fernanda S. C., Lipowsky, Reinhard, Dimova, Rumiana

Biological cells are contained by a fluid lipid bilayer (plasma membrane, PM) that allows for large deformations, often exceeding 50% of the apparent initial PM area. Isolated lipids self-organize into membranes, but are prone to rupture at small (<2–4%) area strains, which limits progress for synthetic reconstitution of cellular features. Here, it is shown that by preserving PM structure and composition during isolation from cells, vesicles with cell-like elasticity can be obtained. It is found that these plasma membrane vesicles store significant area in the form of nanotubes in their lumen. These act as lipid reservoirs and are recruited by mechanical tension applied to the outer vesicle membrane. Both in experiment and theory, it is shown that a “superelastic” response emerges from the interplay of lipid domains and membrane curvature. This finding allows for bottom-up engineering of synthetic biomaterials that appear one magnitude softer and with threefold larger deformability than conventional lipid vesicles. These results open a path toward designing superelastic synthetic cells possessing the inherent mechanics of biological cells.

Loading...
Thumbnail Image
Item

In Situ Fabrication of Freestanding Single-Atom-Thick 2D Metal/Metallene and 2D Metal/ Metallene Oxide Membranes: Recent Developments

2021, Ta, Huy Q., Mendes, Rafael G., Liu, Yu, Yang, Xiaoqin, Luo, Jingping, Bachmatiuk, Alicja, Gemming, Thomas, Zeng, Mengqi, Fu, Lei, Liu, Lijun, Rümmeli, Mark H.

In recent years, two-dimensional (2D) materials have attracted a lot of research interest as they exhibit several fascinating properties. However, outside of 2D materials derived from van der Waals layered bulk materials only a few other such materials are realized, and it remains difficult to confirm their 2D freestanding structure. Despite that, many metals are predicted to exist as 2D systems. In this review, the authors summarize the recent progress made in the synthesis and characterization of these 2D metals, so called metallenes, and their oxide forms, metallene oxides as free standing 2D structures formed in situ through the use of transmission electron microscopy (TEM) and scanning TEM (STEM) to synthesize these materials. Two primary approaches for forming freestanding monoatomic metallic membranes are identified. In the first, graphene pores as a means to suspend the metallene or metallene oxide and in the second, electron-beam sputtering for the selective etching of metal alloys or thick complex initial materials is employed to obtain freestanding single-atom-thick 2D metal. The data show a growing number of 2D metals/metallenes and 2D metal/ metallene oxides having been confirmed and point to a bright future for further discoveries of these 2D materials.

Loading...
Thumbnail Image
Item

Nanoporous Morphogenesis in Amorphous Carbon Layers: Experiments and Modeling on Energetic Ion Induced Self‐Organization

2021, Hoffmann, Daniel T., Dietrich, Johannes, Mändl, Stephan, Zink, Mareike, Mayr, Stefan G.

Nanoporous amorphous carbon constitutes a highly relevant material for a multitude of applications ranging from energy to environmental and biomedical systems. In the present work, it is demonstrated experimentally how energetic ions can be utilized to tailor porosity of thin sputter deposited amorphous carbon films. The physical mechanisms underlying self-organized nanoporous morphogenesis are unraveled by employing extensive molecular dynamics and phase field models across different length scales. It is demonstrated that pore formation is a defect induced phenomenon, in which vacancies cluster in a spinodal decomposition type of self-organization process, while interstitials are absorbed by the amorphous matrix, leading to additional volume increase and radiation induced viscous flow. The proposed modeling framework is capable to reproduce and predict the experimental observations from first principles and thus opens the venue for computer assisted design of nanoporous frameworks.

Loading...
Thumbnail Image
Item

The relationship between the language of scientific publication and its impact in the field of public and collective health

2021, Dos Santos, Solange Maria, Fraumann Grischa, Belli, Simone, Mugnaini, Rogerio

The language of scientific publications is a crucial factor when seeking to reach an international audience, because it affects linguistic accessibility and the geographical reach of research results. English is the language of science and the fact that it can be understood by most readers represents an undeniable advantage. Moreover, the fact that a large proportion of Ibero-American research has been published in national languages, is often cited as one of the reasons for its limited exposure. The purpose of this study was to analyze the relationship between scientific output published in a native language and its degree of exposure and impact in the field of Public and Collective Health. This bibliometric study was carried out based on the scientific output data obtained from the most prolific countries that are members of the SciELO (Scientific Electronic Library Online) Network in Public and Collective Health, in the 2011-2018 period. The data was collected from the SciELO Citation Index database (SciELO CI), which was integrated into the larger WoS platform in 2014 and was chosen on account of its importance as one of the few regional indexes that is still scarcely used in studies of this nature. The data shows that Brazilian articles in Portuguese had the greatest citation impact on publications in its own language (48.7%), while its articles in English present practically the same impact (48.5%) on Portuguese publications, followed by 34.5% on Spanish publications. The impact on the national language is also significant in the case of both Mexican and Spanish publications, to whom the percentage of citing articles in Spanish, for documents cited in the same language, is higher than for documents cited in English (respectively 1.6 and 1.8). The same applies to Portuguese and US-American articles where, respectively 56.6% and 43.9% of the citing articles are in their native language. Cuban and Peruvian articles have more than 90% of their citing articles in the national language. In contrast, the USA and Brazil are countries that have a greater citation impact on other languages, especially when published in Spanish. The extent of exposure of a given language of the scientific publication varies per the country´s scientific output. In the case of Brazilian and US-American publications, including publications in the national languages of these countries, the effects on audiences in other languages can be measured by the citation impact. Furthermore, the degree of exposure of certain publications suggests that SciELO CI represents a useful database for evaluating local scientific output, and this can be observed, particularly, for publications in the national language.

Loading...
Thumbnail Image
Item

Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice

2021, Clemen, Ramona, Freund, Eric, Mrochen, Daniel, Miebach, Lea, Schmidt, Anke, Rauch, Bernhard H., Lackmann, Jan‐Wilm, Martens, Ulrike, Wende, Kristian, Lalk, Michael, Delcea, Mihaela, Bröker, Barbara M., Bekeschus, Sander

Reactive oxygen species (ROS/RNS) are produced during inflammation and elicit protein modifications, but the immunological consequences are largely unknown. Gas plasma technology capable of generating an unmatched variety of ROS/RNS is deployed to mimic inflammation and study the significance of ROS/RNS modifications using the model protein chicken ovalbumin (Ova vs oxOva). Dynamic light scattering and circular dichroism spectroscopy reveal structural modifications in oxOva compared to Ova. T cells from Ova-specific OT-II but not from C57BL/6 or SKH-1 wild type mice presents enhanced activation after Ova addition. OxOva exacerbates this activation when administered ex vivo or in vivo, along with an increased interferon-gamma production, a known anti-melanoma agent. OxOva vaccination of wild type mice followed by inoculation of syngeneic B16F10 Ova-expressing melanoma cells shows enhanced T cell number and activation, decreased tumor burden, and elevated numbers of antigen-presenting cells when compared to their Ova-vaccinated counterparts. Analysis of oxOva using mass spectrometry identifies three hot spots regions rich in oxidative modifications that are associated with the increased T cell activation. Using Ova as a model protein, the findings suggest an immunomodulating role of multi-ROS/RNS modifications that may spur novel research lines in inflammation research and for vaccination strategies in oncology.

Loading...
Thumbnail Image
Item

Chemokine‐Capturing Wound Contact Layer Rescues Dermal Healing

2021, Schirmer, Lucas, Atallah, Passant, Freudenberg, Uwe, Werner, Carsten

Excessive inflammation often impedes the healing of chronic wounds. Scavenging of chemokines by multiarmed poly(ethylene glycol)-glycosaminoglycan (starPEG-GAG) hydrogels has recently been shown to support regeneration in a diabetic mouse chronic skin wound model. Herein, a textile-starPEG-GAG composite wound contact layer (WCL) capable of selectively sequestering pro-inflammatory chemokines is reported. Systematic variation of the local and integral charge densities of the starPEG-GAG hydrogel component allows for tailoring its affinity profile for biomolecular signals of the wound milieu. The composite WCL is subsequently tested in a large animal (porcine) model of human wound healing disorders. Dampening excessive inflammatory signals without affecting the levels of pro-regenerative growth factors, the starPEG-GAG hydrogel-based WCL treatment induced healing with increased granulation tissue formation, angiogenesis, and deposition of connective tissue (collagen fibers). Thus, this biomaterials technology expands the scope of a new anti-inflammatory therapy toward clinical use.

Loading...
Thumbnail Image
Item

Understanding Surface Modifications Induced via Argon Plasma Treatment through Secondary Electron Hyperspectral Imaging

2021, Farr, Nicholas, Thanarak, Jeerawan, Schäfer, Jan, Quade, Antje, Claeyssens, Frederik, Green, Nicola, Rodenburg, Cornelia

Understanding the effects that sterilization methods have on the surface of a biomaterial is a prerequisite for clinical deployment. Sterilization causes alterations in a material's surface chemistry and surface structures that can result in significant changes to its cellular response. Here we compare surfaces resulting from the application of the industry standard autoclave sterilisation to that of surfaces resulting from the use of low-pressure Argon glow discharge within a novel gas permeable packaging method in order to explore a potential new biomaterial sterilisation method. Material surfaces are assessed by applying secondary electron hyperspectral imaging (SEHI). SEHI is a novel low-voltage scanning electron microscopy based characterization technique that, in addition to capturing topographical images, also provides nanoscale resolution chemical maps by utilizing the energy distribution of emitted secondary electrons. Here, SEHI maps are exploited to assess the lateral distributions of diverse functional groups that are effected by the sterilization treatments. This information combined with a range of conventional surface analysis techniques and a cellular metabolic activity assay reveals persuasive reasons as to why low-pressure argon glow discharge should be considered for further optimization as a potential terminal sterilization method for PGS-M, a functionalized form of poly(glycerol sebacate) (PGS).

Loading...
Thumbnail Image
Item

EMT-Induced Cell-Mechanical Changes Enhance Mitotic Rounding Strength

2020, Hosseini, Kamran, Taubenberger, Anna, Werner, Carsten, Fischer-Friedrich, Elisabeth

To undergo mitosis successfully, most animal cells need to acquire a round shape to provide space for the mitotic spindle. This mitotic rounding relies on mechanical deformation of surrounding tissue and is driven by forces emanating from actomyosin contractility. Cancer cells are able to maintain successful mitosis in mechanically challenging environments such as the increasingly crowded environment of a growing tumor, thus, suggesting an enhanced ability of mitotic rounding in cancer. Here, it is shown that the epithelial–mesenchymal transition (EMT), a hallmark of cancer progression and metastasis, gives rise to cell-mechanical changes in breast epithelial cells. These changes are opposite in interphase and mitosis and correspond to an enhanced mitotic rounding strength. Furthermore, it is shown that cell-mechanical changes correlate with a strong EMT-induced change in the activity of Rho GTPases RhoA and Rac1. Accordingly, it is found that Rac1 inhibition rescues the EMT-induced cortex-mechanical phenotype. The findings hint at a new role of EMT in successful mitotic rounding and division in mechanically confined environments such as a growing tumor.

Loading...
Thumbnail Image
Item

Medical Gas Plasma Jet Technology Targets Murine Melanoma in an Immunogenic Fashion

2020, Bekeschus, Sander, Clemen, Ramona, Nießner, Felix, Sagwal, Sanjeev Kumar, Freund, Eric, Schmidt, Anke

Medical technologies from physics are imperative in the diagnosis and therapy of many types of diseases. In 2013, a novel cold physical plasma treatment concept was accredited for clinical therapy. This gas plasma jet technology generates large amounts of different reactive oxygen and nitrogen species (ROS). Using a melanoma model, gas plasma technology is tested as a novel anticancer agent. Plasma technology derived ROS diminish tumor growth in vitro and in vivo. Varying the feed gas mixture modifies the composition of ROS. Conditions rich in atomic oxygen correlate with killing activity and elevate intratumoral immune-infiltrates of CD8+ cytotoxic T-cells and dendritic cells. T-cells from secondary lymphoid organs of these mice stimulated with B16 melanoma cells ex vivo show higher activation levels as well. This correlates with immunogenic cancer cell death and higher calreticulin and heat-shock protein 90 expressions induced by gas plasma treatment in melanoma cells. To test the immunogenicity of gas plasma treated melanoma cells, 50% of mice vaccinated with these cells are protected from tumor growth compared to 1/6 and 5/6 mice negative control (mitomycin C) and positive control (mitoxantrone), respectively. Gas plasma jet technology is concluded to provide immunoprotection against malignant melanoma both in vitro and in vivo.

Loading...
Thumbnail Image
Item

Call to action for global access to and harmonization of quality information of individual earth science datasets

2021, Peng, Ge, Downs, Robert R., Lacagnina, Carlo, Ramapriyan, Hampapuram, Ivánová, Ivana, Moroni, David, Wei, Yaxing, Larnicol, Gilles, Wyborn, Lesley, Goldberg, Mitch, Schulz, Jörg, Bastrakova, Irina, Ganske, Anette, Bastin, Lucy, Khalsa, Siri Jodha S., Wu, Mingfang, Shie, Chung-Lin, Ritchey, Nancy, Jones, Dave, Habermann, Ted, Lief, Christina, Maggio, Iolanda, Albani, Mirko, Stall, Shelley, Zhou, Lihang, Drévillon, Marie, Champion, Sarah, Hou, C. Sophie, Doblas-Reyes, Francisco, Lehnert, Kerstin, Robinson, Erin, Bugbee, Kaylin

Knowledge about the quality of data and metadata is important to support informed decisions on the (re)use of individual datasets and is an essential part of the ecosystem that supports open science. Quality assessments reflect the reliability and usability of data. They need to be consistently curated, fully traceable, and adequately documented, as these are crucial for sound decision- and policy-making efforts that rely on data. Quality assessments also need to be consistently represented and readily integrated across systems and tools to allow for improved sharing of information on quality at the dataset level for individual quality attribute or dimension. Although the need for assessing the quality of data and associated information is well recognized, methodologies for an evaluation framework and presentation of resultant quality information to end users may not have been comprehensively addressed within and across disciplines. Global interdisciplinary domain experts have come together to systematically explore needs, challenges and impacts of consistently curating and representing quality information through the entire lifecycle of a dataset. This paper describes the findings of that effort, argues the importance of sharing dataset quality information, calls for community action to develop practical guidelines, and outlines community recommendations for developing such guidelines. Practical guidelines will allow for global access to and harmonization of quality information at the level of individual Earth science datasets, which in turn will support open science.