Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

A Multiwavelength Dynamical State Analysis of ACT-CL J0019.6+0336

2021, Pillay, Denisha S., Turner, David J., Hilton, Matt, Knowles, Kenda, Kesebonye, Kabelo C., Moodley, Kavilan, Mroczkowski, Tony, Oozeer, Nadeem, Pfrommer, Christoph, Sikhosana, Sinenhlanhla P., Wollack, Edward J.

In our study, we show a multiwavelength view of ACT-CL J0019.6+0336 (which hosts a radio halo), to investigate the cluster dynamics, morphology, and ICM. We use a combination of XMM-Newton images, Dark Energy Survey (DES) imaging and photometry, SDSS spectroscopic information, and 1.16 GHz MeerKAT data to study the cluster properties. Various X-ray and optical morphology parameters are calculated to investigate the level of disturbance. We find disturbances in two X-ray parameters and the optical density map shows elongated and axisymmetric structures with the main cluster component southeast of the cluster centre and another component northwest of the cluster centre. We also find a BCG offset of ~950 km/s from the mean velocity of the cluster, and a discrepancy between the SZ mass, X-ray mass, and dynamical mass (MX,500 and MSZ,500 lies > 3σ away from Mdyn,500), showing that J0019 is a merging cluster and probably in a post-merging phase.

Loading...
Thumbnail Image
Item

Turning AGN Bubbles into Radio Relics with Sloshing: Modeling CR Transport with Realistic Physics

2021, ZuHone, John, Ehlert, Kristian, Weinberger, Rainer, Pfrommer, Christoph

Radio relics are arc-like synchrotron sources at the periphery of galaxy clusters, produced by cosmic-ray electrons in a µG magnetic field, which are believed to have been (re-)accelerated by merger shock fronts. However, not all relics appear at the same location as shocks as seen in the X-ray. In a previous work, we suggested that the shape of some relics may result from the pre-existing spatial distribution of cosmic-ray electrons, and tested this hypothesis using simulations by launching AGN jets into a cluster atmosphere with sloshing gas motions generated by a previous merger event. We showed that these motions could transport the cosmic ray-enriched material of the AGN bubbles to large radii and stretch it in a tangential direction, producing a filamentary shape resembling a radio relic. In this work, we improve our physical description for the cosmic rays by modeling them as a separate fluid which undergoes diffusion and Alfvén losses. We find that, including this additional cosmic ray physics significantly diminishes the appearance of these filamentary features, showing that our original hypothesis is sensitive to the modeling of cosmic ray physics in the intracluster medium.

Loading...
Thumbnail Image
Item

Type III Radio Bursts Observations on 20th August 2017 and 9th September 2017 with LOFAR Bałdy Telescope

2021, Dabrowski, Bartosz, Flisek, Paweł, Mikuła, Katarzyna, Froń, Adam, Vocks, Christian, Magdalenić, Jasmina, Krankowski, Andrzej, Zhang, PeiJin, Zucca, Pietro, Mann, Gottfried

We present the observations of two type III solar radio events performed with LOFAR (LOw-Frequency ARray) station in Bałdy (PL612), Poland in single mode. The first event occurred on 20th August 2017 and the second one on 9th September 2017. Solar dynamic spectra were recorded in the 10 MHz up to 90 MHz frequency band. Together with the wide frequency bandwidth LOFAR telescope (with single station used) provides also high frequency and high sensitivity observations. Additionally to LOFAR observations, the data recorded by instruments on boards of the Interface Region Imaging Spectrograph (IRIS) and Solar Dynamics Observatory (SDO) in the UV spectral range complement observations in the radio field. Unfortunately, only the radio event from 9th September 2017 was observed by both satellites. Our study shows that the LOFAR single station observations, in combination with observations at other wavelengths can be very useful for better understanding of the environment in which the type III radio events occur.

Loading...
Thumbnail Image
Item

Phase-Space Correlations among Systems of Satellite Galaxies

2021, Pawlowski, Marcel S.

Driven by the increasingly complete observational knowledge of systems of satellite galaxies, mutual spatial alignments and relations in velocities among satellites belonging to a common host have become a productive field of research. Numerous studies have investigated different types of such phase-space correlations and were met with varying degrees of attention by the community. The Planes of Satellite Galaxies issue is maybe the best-known example, with a rich field of research literature and an ongoing, controversial debate on how much of a challenge it poses to the ΛCDM model of cosmology. Another type of correlation, the apparent excess of close pairs of dwarf galaxies, has received considerably less attention despite its reported tension with ΛCDM expectations. With the fast expansion of proper motion measurements in recent years, largely driven by the Gaia mission, other peculiar phase-space correlations have been uncovered among the satellites of the Milky Way. Examples are the apparent tangential velocity excess of satellites compared to cosmological expectations, and the unexpected preference of satellites to be close to their pericenters. At the same time, other kinds of correlations have been found to be more in line with cosmological expectations—specifically, lopsided satellite galaxy systems and the accretion of groups of satellite galaxies. The latter has mostly been studied in cosmological simulations thus far, but it offers the potential to address some of the other issues by providing a way to produce correlations among the orbits of a group’s satellite galaxy members. This review is the first to provide an introduction to the highly active field of phase-space correlations among satellite galaxy systems. The emphasis is on summarizing existing, recent research and highlighting interdependencies between the different, currently almost exclusively individually considered types of correlations. Future prospects in light of upcoming observational facilities and our ever-expanding knowledge of satellite galaxy systems beyond the Local Group are also briefly discussed

Loading...
Thumbnail Image
Item

Wide Field Spectral Imaging with Shifted Excitation Raman Difference Spectroscopy Using the Nod and Shuffle Technique

2020, Korinth, Florian, Schmälzlin, Elmar, Stiebing, Clara, Urrutia, Tanya, Micheva, Genoveva, Sandin, Christer, Müller, André, Maiwald, Martin, Sumpf, Bernd, Krafft, Christoph, Tränkle, Günther, Roth, Martin M, Popp, Jürgen

Wide field Raman imaging using the integral field spectroscopy approach was used as a fast, one shot imaging method for the simultaneous collection of all spectra composing a Raman image. For the suppression of autofluorescence and background signals such as room light, shifted excitation Raman difference spectroscopy (SERDS) was applied to remove background artifacts in Raman spectra. To reduce acquisition times in wide field SERDS imaging, we adapted the nod and shuffle technique from astrophysics and implemented it into a wide field SERDS imaging setup. In our adapted version, the nod corresponds to the change in excitation wavelength, whereas the shuffle corresponds to the shifting of charges up and down on a Charge-Coupled Device (CCD) chip synchronous to the change in excitation wavelength. We coupled this improved wide field SERDS imaging setup to diode lasers with 784.4/785.5 and 457.7/458.9 nm excitation and applied it to samples such as paracetamol and aspirin tablets, polystyrene and polymethyl methacrylate beads, as well as pork meat using multiple accumulations with acquisition times in the range of 50 to 200 ms. The results tackle two main challenges of SERDS imaging: gradual photobleaching changes the autofluorescence background, and multiple readouts of CCD detector prolong the acquisition time.

Loading...
Thumbnail Image
Item

Space Photometry with BRITE-Constellation

2021, Weiss, Werner, Zwintz, Konstanze, Kuschnig, Rainer, Handler, Gerald, Moffat, Anthony, Baade, Dietrich, Bowman, Dominic, Granzer, Thomas, Kallinger, Thomas, Koudelka, Otto, Lovekin, Catherine, Neiner, Coralie, Pablo, Herbert, Pigulski, Andrzej, Popowicz, Adam, Ramiaramanantsoa, Tahina, Rucinski, Slavek, Strassmeier, Klaus, Wade, Gregg

BRITE-Constellation is devoted to high-precision optical photometric monitoring of bright stars, distributed all over the Milky Way, in red and/or blue passbands. Photometry from space avoids the turbulent and absorbing terrestrial atmosphere and allows for very long and continuous observing runs with high time resolution and thus provides the data necessary for understanding various processes inside stars (e.g., asteroseismology) and in their immediate environment. While the first astronomical observations from space focused on the spectral regions not accessible from the ground it soon became obvious around 1970 that avoiding the turbulent terrestrial atmosphere significantly improved the accuracy of photometry and satellites explicitly dedicated to high-quality photometry were launched. A perfect example is BRITE-Constellation, which is the result of a very successful cooperation between Austria, Canada and Poland. Research highlights for targets distributed nearly over the entire HRD are presented, but focus primarily on massive and hot stars.

Loading...
Thumbnail Image
Item

Potential Role of Sequential Solid-State and Submerged-Liquid Fermentations in a Circular Bioeconomy

2021, López-Gómez, José Pablo, Venus, Joachim

An efficient processing of organic solid residues will be pivotal in the development of the circular bioeconomy. Due to their composition, such residues comprise a great biochemical conversion potential through fermentations. Generally, the carbohydrates and proteins present in the organic wastes cannot be directly metabolized by microorganisms. Thus, before fermentation, enzymes are used in a hydrolysis step to release digestible sugars and nitrogen. Although enzymes can be efficiently produced from organic solid residues in solid-state fermentations (SsF), challenges in the development and scale-up of SsF technologies, especially bioreactors, have hindered a wider application of such systems. Therefore, most of the commercial enzymes are produced in submerged-liquid fermentations (SmF) from expensive simple sugars. Instead of independently evaluating SsF and SmF, the review covers the option of combining them in a sequential process in which, enzymes are firstly produced in SsF and then used for hydrolysis, yielding a suitable medium for SmF. The article reviews experimental work that has demonstrated the feasibility of the process and underlines the benefits that such combination has. Finally, a discussion is included which highlights that, unlike typically perceived, SsF should not be considered a counterpart of SmF but, in contrast, the main advantages of each type of fermentation are accentuated in a synergistic sequential SsF-SmF.

Loading...
Thumbnail Image
Item

Searching for Magnetospheres around Herbig Ae/Be Stars

2021, Pogodin, Mikhail, Drake, Natalia, Beskrovnaya, Nina, Pavlovskiy, Sergei, Hubrig, Swetlana, Schöller, Markus, Järvinen, Silva, Kozlova, Olesya, Alekseev, Ilya

We describe four different approaches for the detection of magnetospheric accretion among Herbig Ae/Be stars with accretion disks. Studies of several unique objects have been carried out. One of the objects is the Herbig Ae star HD 101412 with a comparatively strong magnetic field. The second is the early-type Herbig B6e star HD 259431. The existence of a magnetosphere in these objects was not recognized earlier. In both cases, a periodicity in the variation of some line parameters, originating near the region of the disk/star interaction, has been found. The third object is the young binary system HD 104237, hosting a Herbig Ae star and a T Tauri star. Based on the discovery of periodic variations of equivalent widths of atmospheric lines in the spectrum of the primary, we have concluded that the surface of the star is spotted. Comparing our result with an earlier one, we argue that these spots can be connected with the infall of material from the disk onto the stellar surface through a magnetosphere. The fourth example is the Herbig Ae/Be star HD 37806. Signatures of magnetospheric accretion in this object have been identified using a different method. They were inferred from the short-term variability of the He I λ5876 line profile forming in the region of the disk/star interaction.