Search Results

Now showing 1 - 10 of 73
Loading...
Thumbnail Image
Item

Plasmonic Properties of Colloidal Assemblies

2021, Rossner, Christian, König, Tobias A.F., Fery, Andreas

The assembly of metal nanoparticles into supracolloidal structures unlocks optical features, which can go beyond synergistic combinations of the properties of their primary building units. This is due to inter-particle plasmonic coupling effects, which give rise to emergent properties. The motivation for this progress report is twofold: First, it is described how simulation approaches can be used to predict and understand the optical properties of supracolloidal metal clusters. These simulations may form the basis for the rational design of plasmonic assembly architectures, based on the desired functional cluster properties, and they may also spark novel material designs. Second, selected scalable state-of-the-art preparative strategies based on synthetic polymers to guide the supracolloidal assembly are discussed. These routes also allow for equipping the assembly structures with adaptive properties, which in turn enables (inter-)active control over the cluster optical properties. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

2021, Moors, Marco, An, Yun, Kuc, Agnieszka, Monakhov, Kirill Yu

Highly ordered titanium oxide films grown on a Pt3Ti(111) alloy surface were utilized for the controlled immobilization and tip-induced electric field-triggered electronic manipulation of nanoscopic W3O9 clusters. Depending on the operating conditions, two different stable oxide phases, z'-TiO x and w'-TiO x , were produced. These phases show a strong effect on the adsorption characteristics and reactivity of W3O9 clusters, which are formed as a result of thermal evaporation of WO3 powder on the complex TiO x /Pt3Ti(111) surfaces under ultra-high vacuum conditions. The physisorbed tritungsten nano-oxides were found as isolated single units located on the metallic attraction points or as supramolecular self-assemblies with a W3O9-capped hexagonal scaffold of W3O9 units. By applying scanning tunneling microscopy to the W3O9-(W3O9)6 structures, individual units underwent a tip-induced reduction to W3O8. At elevated temperatures, agglomeration and growth of large WO3 islands, which thickness is strongly limited to a maximum of two unit cells, were observed. The findings boost progress toward template-directed nucleation, growth, networking, and charge state manipulation of functional molecular nanostructures on surfaces using operando techniques.

Loading...
Thumbnail Image
Item

Ontology Modelling for Materials Science Experiments

2021, Alam, Mehwish, Birkholz, Henk, Dessì, Danilo, Eberl, Christoph, Fliegl, Heike, Gumbsch, Peter, von Hartrott, Philipp, Mädler, Lutz, Niebel, Markus, Sack, Harald, Thomas, Akhil, Tiddi, Ilaria, Maleshkova, Maria, Pellegrini, Tassilo, de Boer, Victor

Materials are either enabler or bottleneck for the vast majority of technological innovations. The digitization of materials and processes is mandatory to create live production environments which represent physical entities and their aggregations and thus allow to represent, share, and understand materials changes. However, a common standard formalization for materials knowledge in the form of taxonomies, ontologies, or knowledge graphs has not been achieved yet. This paper sketches the e_orts in modelling an ontology prototype to describe Materials Science experiments. It describes what is expected from the ontology by introducing a use case where a process chain driven by the ontology enables the curation and understanding of experiments.

Loading...
Thumbnail Image
Item

Tailoring Plasmonics of Au@Ag Nanoparticles by Silica Encapsulation

2021, Schultz, Johannes, Kirner, Felizitas, Potapov, Pavel, Büchner, Bernd, Lubk, Axel, Sturm, Elena V.

Hybrid metallic nanoparticles (NPs) encapsulated in oxide shells are currently intensely studied for plasmonic applications in sensing, medicine, catalysis, and photovoltaics. Here, a method for the synthesis of Au@Ag@SiO2 cubes with a uniform silica shell of variable and adjustable thickness in the nanometer range is introduced and their excellent, highly reproducible, and tunable optical response is demonstrated. Varying the silica shell thickness, the excitation energies of the single NP plasmon modes can be tuned in a broad spectral range between 2.55 and 3.25 eV. Most importantly, a strong coherent coupling of the surface plasmons is revealed at the silver–silica interface with Mie resonances at the silica–vacuum interface leading to a significant field enhancement at the encapsulated NP surface in the range of 100% at shell thicknesses t ≃ 20 nm. Consequently, the synthesis method and the field enhancement open pathways to a widespread use of silver NPs in plasmonic applications including photonic crystals and may be transferred to other non-precious metals. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Spectrometer‐free Optical Hydrogen Sensing Based on Fano‐like Spatial Distribution of Transmission in a Metal−Insulator−Metal Plasmonic Doppler Grating

2021, Chen, Yi‐Ju, Lin, Fan‐Cheng, Singh, Ankit Kumar, Ouyang, Lei, Huang, Jer‐Shing

Optical nanosensors are promising for hydrogen sensing because they are small, free from spark generation, and feasible for remote optical readout. Conventional optical nanosensors require broadband excitation and spectrometers, rendering the devices bulky and complex. An alternative is spatial intensity-based optical sensing, which only requires an imaging system and a smartly designed platform to report the spatial distribution of analytical optical signals. Here, a spatial intensity-based hydrogen sensing platform is presented based on Fano-like spatial distribution of the transmission in a Pd-Al2O3-Au metal-insulator-metal plasmonic Doppler grating (MIM-PDG). The MIM-PDG manifests the Fano resonance as an asymmetric spatial transmission intensity profile. The absorption of hydrogen changes the spatial Fano-like transmission profiles, which can be analyzed with a “spatial” Fano resonance model and the extracted Fano resonance parameters can be used to establish analytical calibration lines. While gratings sensitive to hydrogen absorption are suitable for hydrogen sensing, hydrogen insensitive gratings are also found, which provide an unperturbed reference signal and may find applications in nanophotonic devices that require a stable optical response under fluctuating hydrogen atmosphere. The MIM-PDG platform is a spectrometer-free and intensity-based optical sensor that requires only an imaging system, making it promising for cellphone-based optical sensing applications. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH.

Loading...
Thumbnail Image
Item

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

2021, Deinhart, Victor, Kern, Lisa-Marie, Kirchhof, Jan N., Juergensen, Sabrina, Sturm, Joris, Krauss, Enno, Feichtner, Thorsten, Kovalchuk, Sviatoslav, Schneider, Michael, Engel, Dieter, Pfau, Bastian, Hecht, Bert, Bolotin, Kirill I., Reich, Stephanie, Höflich, Katja

Focused beams of helium ions are a powerful tool for high-fidelity machining with spatial precision below 5 nm. Achieving such a high patterning precision over large areas and for different materials in a reproducible manner, however, is not trivial. Here, we introduce the Python toolbox FIB-o-mat for automated pattern creation and optimization, providing full flexibility to accomplish demanding patterning tasks. FIB-o-mat offers high-level pattern creation, enabling high-fidelity large-area patterning and systematic variations in geometry and raster settings. It also offers low-level beam path creation, providing full control over the beam movement and including sophisticated optimization tools. Three applications showcasing the potential of He ion beam nanofabrication for two-dimensional material systems and devices using FIB-o-mat are presented.

Loading...
Thumbnail Image
Item

Emission Manipulation by DNA Origami‐Assisted Plasmonic Nanoantennas

2021, Yeşilyurt, Ayşe Tuğça Mina, Huang, Jer‐Shing

Plasmonic nanoantennas mediate far and near optical fields and confine the light to subwavelength dimensions. The spatial organization of nanoantenna elements is critical as it affects the interelement coupling and determines the resultant antenna mode. To couple quantum emitters to optical antennas, high precision on the order of a few nm with respect to the antenna is necessary. As an emerging nanofabrication technique, DNA origami has proven itself to be a robust nanobreadboard to obtain sub-5 nm positioning precision for a diverse range of materials. Eliminating the need for expensive state-of-the-art top-down fabrication facilities, DNA origami enables cost-efficient implementation of nanoscale architectures, including novel nanoantennas. The ability of DNA origami to deterministically position single quantum emitters into nanoscale hotspots further boosts the efficiency of light–matter interaction controlled via optical antennas. This review recapitulates the recent progress in plasmonic nanoantennas assisted by DNA origami and focuses on their various configurations. How those nanoantennas act on the emission and absorption properties of quantum emitters positioned in the hotspots is explicitly discussed. In the end, open challenges are outlined and future possibilities lying ahead are pointed out for this powerful triad of biotechnology, nanooptics, and photophysics. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Tailored Disorder in Photonics: Learning from Nature

2021, Rothammer, Maximilian, Zollfrank, Cordt, Busch, Kurt, Freymann, Georg von

Disorder and photonics have long been seen as natural adversaries and designers of optical systems have often driven systems to perfection by minimizing deviations from the ideal design. Especially in the field of photonic crystals and metamaterials but also for optical circuits, disorder has been avoided as a nuisance for many years. However, starting from the very robust structural colors found in nature, scientists learn to analyze and tailor disorder to achieve functionalities beyond what is possible with perfectly ordered or ideal systems alone. This review article covers theoretical and materials aspects of tailored disorder as well as experimental results. Furthermore selected examples are highlighted in greater detail, for which the intentional use of disorder adds additional functionality or provides novel functionality impossible without disorder. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Steps towards a Dislocation Ontology for Crystalline Materials

2021, Ihsan, Ahmad Zainul, Dessì, Danilo, Alam, Mehwish, Sack, Harald, Sandfeld, Stefan, García-Castro, Raúl, Davies, John, Antoniou, Grigoris, Fortuna, Carolina

The field of Materials Science is concerned with, e.g., properties and performance of materials. An important class of materials are crystalline materials that usually contain “dislocations" - a line-like defect type. Dislocation decisively determine many important materials properties. Over the past decades, significant effort was put into understanding dislocation behavior across different length scales both with experimental characterization techniques as well as with simulations. However, for describing such dislocation structures there is still a lack of a common standard to represent and to connect dislocation domain knowledge across different but related communities. An ontology offers a common foundation to enable knowledge representation and data interoperability, which are important components to establish a “digital twin". This paper outlines the first steps towards the design of an ontology in the dislocation domain and shows a connection with the already existing ontologies in the materials science and engineering domain.

Loading...
Thumbnail Image
Item

Exploiting Combinatorics to Investigate Plasmonic Properties in Heterogeneous Ag-Au Nanosphere Chain Assemblies

2021, Schletz, Daniel, Schultz, Johannes, Potapov, Pavel L., Steiner, Anja Maria, Krehl, Jonas, König, Tobias A.F., Mayer, Martin, Lubk, Axel, Fery, Andreas

Chains of coupled metallic nanoparticles are of special interest for plasmonic applications because they can sustain highly dispersive plasmon bands, allowing strong ballistic plasmon wave transport. Whereas early studies focused on homogeneous particle chains exhibiting only one dominant band, heterogeneous assemblies consisting of different nanoparticle species came into the spotlight recently. Their increased configuration space principally allows engineering multiple bands, bandgaps, or topological states. Simultaneously, the challenge of the precise arrangement of nanoparticles, including their distances and geometric patterns, as well as the precise characterization of the plasmonics in these systems, persists. Here, the surface plasmon resonances in heterogeneous Ag-Au nanoparticle chains are reported. Wrinkled templates are used for directed self-assembly of monodisperse gold and silver nanospheres as chains, which allows assembling statistical combinations of more than 109 particles. To reveal the spatial and spectral distribution of the plasmonic response, state-of-the-art scanning transmission electron microscopy coupled with electron energy loss spectroscopy accompanied by boundary element simulations is used. A variety of modes in the heterogeneous chains are found, ranging from localized surface plasmon modes occurring in single gold or silver spheres, respectively, to modes that result from the hybridization of the single particles. This approach opens a novel avenue toward combinatorial studies of plasmonic properties in heterosystems. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH