Search Results

Now showing 1 - 2 of 2
  • Item
    Consistency and convergence for a family of finite volume discretizations of the Fokker–Planck operator
    (Les Ulis : EDP Sciences, 2021) Heida, Martin; Kantner, Markus; Stephan, Artur
    We introduce a family of various finite volume discretization schemes for the Fokker–Planck operator, which are characterized by different Stolarsky weight functions on the edges. This family particularly includes the well-established Scharfetter–Gummel discretization as well as the recently developed square-root approximation (SQRA) scheme. We motivate this family of discretizations both from the numerical and the modeling point of view and provide a uniform consistency and error analysis. Our main results state that the convergence order primarily depends on the quality of the mesh and in second place on the choice of the Stolarsky weights. We show that the Scharfetter–Gummel scheme has the analytically best convergence properties but also that there exists a whole branch of Stolarsky means with the same convergence quality. We show by numerical experiments that for small convection the choice of the optimal representative of the discretization family is highly non-trivial, while for large gradients the Scharfetter–Gummel scheme stands out compared to the others.
  • Item
    Second-order analysis of an optimal control problem in a phase field tumor growth model with singular potentials and chemotaxis
    (Les Ulis : EDP Sciences, 2021) Colli, Pierluigi; Signori, Andrea; Sprekels, Jürgen
    This paper concerns a distributed optimal control problem for a tumor growth model of Cahn–Hilliard type including chemotaxis with possibly singular potentials, where the control and state variables are nonlinearly coupled. First, we discuss the weak well-posedness of the system under very general assumptions for the potentials, which may be singular and nonsmooth. Then, we establish the strong well-posedness of the system in a reduced setting, which however admits the logarithmic potential: this analysis will lay the foundation for the study of the corresponding optimal control problem. Concerning the optimization problem, we address the existence of minimizers and establish both first-order necessary and second-order sufficient conditions for optimality. The mathematically challenging second-order analysis is completely performed here, after showing that the solution mapping is twice continuously differentiable between suitable Banach spaces via the implicit function theorem. Then, we completely identify the second-order Fréchet derivative of the control-to-state operator and carry out a thorough and detailed investigation about the related properties.