Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Sub-100 fs mode-locked Tm:CLTGG laser

2021, Wang, Li, Chen, Weidong, Pan, Zhongben, Loiko, Pavel, Bae, Ji Eun, Rotermund, Fabian, Mateos, Xavier, Griebner, Uwe, Petrov, Valentin

We report on the first sub-100 fs mode-locked laser operation of a Tm3+-doped disordered calcium lithium tantalum gallium garnet (Tm:CLTGG) crystal. Soliton mode-locking was initiated and stabilized by a transmission-type single-walled carbon nanotube saturable absorber. Pulses as short as 69 fs were achieved at a central wavelength of 2010.4 nm with an average power of 28 mW at a pulse repetition rate of ∼87.7 MHz. In the sub-100 fs regime, the maximum average output power amounted to 103 mW.

Loading...
Thumbnail Image
Item

Sub-6 optical-cycle Kerr-lens mode-locked Tm:Lu2O3 and Tm:Sc2O3 combined gain media laser at 2.1 μm

2021, Suzuki, Anna, Kränkel, Christian, Tokurakawa, Masaki

We present a combined gain media Kerr-lens mode-locked laser based on a Tm:Lu2O3 ceramic and a Tm:Sc2O3 single crystal. Pulses as short as 41 fs, corresponding to less than 6 optical cycles, were obtained with an average output power of 42 mW at a wavelength of 2.1 μm and a repetition rate of 93.3 MHz. Furthermore, a maximum average power of 316 mW with a pulse duration of 73 fs was achieved.

Loading...
Thumbnail Image
Item

Diode-pumped sub-50-fs Kerr-lens mode-locked Yb:GdYCOB laser

2021, Zeng, Huangjun, Lin, Haifeng, Lin, Zhanglang, Zhang, Lizhen, Lin, Zhoubin, Zhang, Ge, Petrov, Valentin, Loiko, Pavel, Mateos, Xavier, Wang, Li, Chen, Weidong

We present a sub-50-fs diode-pumped Kerr-lens mode-locked laser employing a novel “mixed” monoclinic Yb:Ca4(Gd,Y)O(BO3)3 (Yb:GdYCOB) crystal as a gain medium. Nearly Fourier-limited pulses as short as 43 fs at 1036.7 nm are generated with an average power of 84 mW corresponding to a pulse repetition rate of ∼70.8 MHz. A higher average power of 300 mW was achieved at the expense of the pulse duration (113 fs) corresponding to an optical-to-optical efficiency of 35.8% representing a record-high value for any Yb-doped borate crystal. Non-phase-matched self-frequency doubling is observed in the mode-locked regime with pronounced strong spectral fringes which originate from two delayed green replicas of the fundamental femtosecond pulses in the time domain.