Search Results

Now showing 1 - 10 of 37
  • Item
    Causes and importance of new particle formation in the present-day and preindustrial atmospheres
    (Hoboken, NJ : Wiley, 2017) Gordon, Hamish; Kirkby, Jasper; Baltensperger, Urs; Bianchi, Federico; Breitenlechner, Martin; Curtius, Joachim; Dias, Antonio; Dommen, Josef; Donahue, Neil M.; Dunne, Eimear M.; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C.; Frege, Carla; Fuchs, Claudia; Hansel, Armin; Hoyle, Christopher R.; Kulmala, Markku; Kürten, Andreas; Lehtipalo, Katrianne; Makhmutov, Vladimir; Molteni, Ugo; Rissanen, Matti P.; Stozkhov, Yuri; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Robert; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Yan, Chao; Carslaw, Ken S.
    New particle formation has been estimated to produce around half of cloud-forming particles in the present-day atmosphere, via gas-to-particle conversion. Here we assess the importance of new particle formation (NPF) for both the present-day and the preindustrial atmospheres. We use a global aerosol model with parametrizations of NPF from previously published CLOUD chamber experiments involving sulfuric acid, ammonia, organic molecules, and ions. We find that NPF produces around 67% of cloud condensation nuclei at 0.2% supersaturation (CCN0.2%) at the level of low clouds in the preindustrial atmosphere (estimated uncertainty range 45–84%) and 54% in the present day (estimated uncertainty range 38–66%). Concerning causes, we find that the importance of biogenic volatile organic compounds (BVOCs) in NPF and CCN formation is greater than previously thought. Removing BVOCs and hence all secondary organic aerosol from our model reduces low-cloud-level CCN concentrations at 0.2% supersaturation by 26% in the present-day atmosphere and 41% in the preindustrial. Around three quarters of this reduction is due to the tiny fraction of the oxidation products of BVOCs that have sufficiently low volatility to be involved in NPF and early growth. Furthermore, we estimate that 40% of preindustrial CCN0.2% are formed via ion-induced NPF, compared with 27% in the present day, although we caution that the ion-induced fraction of NPF involving BVOCs is poorly measured at present. Our model suggests that the effect of changes in cosmic ray intensity on CCN is small and unlikely to be comparable to the effect of large variations in natural primary aerosol emissions.
  • Item
    Investigating Mesozoic Climate Trends and Sensitivities With a Large Ensemble of Climate Model Simulations
    (Hoboken, NJ : Wiley, 2021) Landwehrs, Jan; Feulner, Georg; Petri, Stefan; Sames, Benjamin; Wagreich, Michael
    The Mesozoic era (∼252 to 66 million years ago) was a key interval in Earth's evolution toward its modern state, witnessing the breakup of the supercontinent Pangaea and significant biotic innovations like the early evolution of mammals. Plate tectonic dynamics drove a fundamental climatic transition from the early Mesozoic supercontinent toward the Late Cretaceous fragmented continental configuration. Here, key aspects of Mesozoic long-term environmental changes are assessed in a climate model ensemble framework. We analyze so far the most extended ensemble of equilibrium climate states simulated for evolving Mesozoic boundary conditions covering the period from 255 to 60 Ma in 5 Myr timesteps. Global mean temperatures are generally found to be elevated above the present and exhibit a baseline warming trend driven by rising sea levels and increasing solar luminosity. Warm (Triassic and mid-Cretaceous) and cool (Jurassic and end-Cretaceous) anomalies result from pCO2 changes indicated by different reconstructions. Seasonal and zonal temperature contrasts as well as continental aridity show an overall decrease from the Late Triassic-Early Jurassic to the Late Cretaceous. Meridional temperature gradients are reduced at higher global temperatures and less land area in the high latitudes. With systematic sensitivity experiments, the influence of paleogeography, sea level, vegetation patterns, pCO2, solar luminosity, and orbital configuration on these trends is investigated. For example, long-term seasonality trends are driven by paleogeography, but orbital cycles could have had similar-scale effects on shorter timescales. Global mean temperatures, continental humidity, and meridional temperature gradients are, however, also strongly affected by pCO2.
  • Item
    Lidar Observations of Stratospheric Gravity Waves From 2011 to 2015 at McMurdo (77.84°S, 166.69°E), Antarctica: 2. Potential Energy Densities, Lognormal Distributions, and Seasonal Variations
    (Hoboken, NJ : Wiley, 2018-8-6) Chu, Xinzhao; Zhao, Jian; Lu, Xian; Harvey, V. Lynn; Jones, R. Michael; Becker, Erich; Chen, Cao; Fong, Weichun; Yu, Zhibin; Roberts, Brendan R.; Dörnbrack, Andreas
    Five years of Fe Boltzmann lidar's Rayleigh temperature data from 2011 to 2015 at McMurdo are used to characterize gravity wave potential energy mass density (Epm), potential energy volume density (Epv), vertical wave number spectra, and static stability N² in the stratosphere 30–50 km. Epm (Epv) profiles increase (decrease) with altitude, and the scale heights of Epv indicate stronger wave dissipation in winter than in summer. Altitude mean (Formula presented.) and (Formula presented.) obey lognormal distributions and possess narrowly clustered small values in summer but widely spread large values in winter. (Formula presented.) and (Formula presented.) vary significantly from observation to observation but exhibit repeated seasonal patterns with summer minima and winter maxima. The winter maxima in 2012 and 2015 are higher than in other years, indicating interannual variations. Altitude mean (Formula presented.) varies by ~30–40% from the midwinter maxima to minima around October and exhibits a nearly bimodal distribution. Monthly mean vertical wave number power spectral density for vertical wavelengths of 5–20 km increases from summer to winter. Using Modern Era Retrospective Analysis for Research and Applications version 2 data, we find that large values of (Formula presented.) during wintertime occur when McMurdo is well inside the polar vortex. Monthly mean (Formula presented.) are anticorrelated with wind rotation angles but positively correlated with wind speeds at 3 and 30 km. Corresponding correlation coefficients are −0.62, +0.87, and +0.80, respectively. Results indicate that the summer-winter asymmetry of (Formula presented.) is mainly caused by critical level filtering that dissipates most gravity waves in summer. (Formula presented.) variations in winter are mainly due to variations of gravity wave generation in the troposphere and stratosphere and Doppler shifting by the mean stratospheric winds.
  • Item
    Evidence for the In‐Situ Generation of Plasma Depletion Structures Over the Transition Region of Geomagnetic Low‐Mid Latitude
    (Hoboken, NJ : Wiley, 2021) Sivakandan, M.; Mondal, S.; Sarkhel, S.; Chakrabarty, D.; Sunil Krishna, M.V.; Upadhayaya, A.K.; Shinbori, A.; Sori, T.; Kannaujiya, S.; Champati Ray, P.K.
    On a geomagnetic quiet night of October 29, 2018, we captured an observational evidence of the onset of dark band structures within the field-of-view of an all-sky airglow imager operating at 630.0 nm over a geomagnetic low-mid latitude transition region, Hanle, Leh Ladakh. Simultaneous ionosonde observations over New Delhi shows the occurrence of spread-F in the ionograms. Additionally, virtual and peak height indicate vertical upliftment in the F layer altitude and reduction in the ionospheric peak frequency were also observed when the dark band pass through the ionosonde location. All these results confirmed that the observed depletions are indeed associated with ionospheric F region plasma irregularities. The rate of total electron content index (ROTI) indicates the absence of plasma bubble activities over the equatorial/low latitude region which confirms that the observed event is a mid-latitude plasma depletion. Our calculations reveal that the growth time of the plasma depletion is ∼2 h if one considers only the Perkins instability mechanism. This is not consistent with the present observations as the plasma depletion developed within ∼25 min. By invoking possible Es layer instabilities and associated E-F region coupling, we show that the growth rate increases roughly by an order of magnitude. This strongly suggests that the Cosgrove and Tsunoda mechanism may be simultaneously operational in this case. Furthermore, it is also suggested that reduced F region flux-tube integrated conductivity in the southern part of onset region created conducive background conditions for the growth of the plasma depletion on this night.
  • Item
    Observations of Reduced Turbulence and Wave Activity in the Arctic Middle Atmosphere Following the January 2015 Sudden Stratospheric Warming
    (Hoboken, NJ : Wiley, 2018-12-11) Triplett, Colin C.; Li, Jintai; Collins, Richard L.; Lehmacher, Gerald A.; Barjatya, Aroh; Fritts, David C.; Strelnikov, Boris; Lübken, Franz‐Josef; Thurairajah, Brentha; Harvey, V. Lynn; Hampton, Donald L.; Varney, Roger H.
    Measurements of turbulence and waves were made as part of the Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX) on the night of 25–26 January 2015 at Poker Flat Research Range, Chatanika, Alaska (65°N, 147°W). Rocket-borne ionization gauge measurements revealed turbulence in the 70- to 88-km altitude region with energy dissipation rates between 0.1 and 24 mW/kg with an average value of 2.6 mW/kg. The eddy diffusion coefficient varied between 0.3 and 134 m2/s with an average value of 10 m2/s. Turbulence was detected around mesospheric inversion layers (MILs) in both the topside and bottomside of the MILs. These low levels of turbulence were measured after a minor sudden stratospheric warming when the circulation continued to be disturbed by planetary waves and winds remained weak in the stratosphere and mesosphere. Ground-based lidar measurements characterized the ensemble of inertia-gravity waves and monochromatic gravity waves. The ensemble of inertia-gravity waves had a specific potential energy of 0.8 J/kg over the 40- to 50-km altitude region, one of the lowest values recorded at Chatanika. The turbulence measurements coincided with the overturning of a 2.5-hr monochromatic gravity wave in a depth of 3 km at 85 km. The energy dissipation rates were estimated to be 3 mW/kg for the ensemble of waves and 18 mW/kg for the monochromatic wave. The MTeX observations reveal low levels of turbulence associated with low levels of gravity wave activity. In the light of other Arctic observations and model studies, these observations suggest that there may be reduced turbulence during disturbed winters.
  • Item
    Multi‐Point Measurements of the Plasma Properties Inside an Aurora From the SPIDER Sounding Rocket
    (Hoboken, NJ : Wiley, 2021) Giono, Gabriel; Ivchenko, Nickolay; Sergienko, Tima; Brändström, Urban
    The Small Payloads for Investigation of Disturbances in Electrojet by Rockets (SPIDER) sounding rocket was launched on February 2nd, 2016 (21:09 UT), deploying 10 free falling units (FFUs) inside a westward traveling auroral surge. Each FFUs deployed spherical electric field and Langmuir probes on wire-booms, providing in situ multi-point recordings of the electric field and plasma properties. The analytical retrieval of the plasma parameters, namely the electron density, electron temperature and plasma potential, from the Langmuir probe measurements was non-trivial due to sheath effects and detailed explanation are discussed in this article. An empirical assumption on the sheath thickness was required, which was confirmed by simulating the plasma environment around the FFU using the Spacecraft Plasma Interaction Software (SPIS). In addition, the retrieved electron density and temperature are also in agreement with the simultaneous incoherent scatter radar measurements from the EISCAT facility. These two independent confirmations provided a good level of confidence in the plasma parameters obtained from the FFUs, and events observed during the flight are discussed in more details. Hints of drift-wave instabilities and increased currents inside a region of enhanced density were observed by the FFUs.
  • Item
    Hemispheric and Seasonal Contrast in Cloud Thermodynamic Phase From A‐Train Spaceborne Instruments
    (Hoboken, NJ : Wiley, 2021) Villanueva, Diego; Senf, Fabian; Tegen, Ina
    Aerosol-cloud interactions are an important source of uncertainty in current climate models. To understand and quantify the influence of ice-nucleating particles in cloud glaciation, it is crucial to have a reliable estimation of the hemispheric and seasonal contrast in cloud top phase, which is believed to result from the higher dust aerosol loading in boreal spring. For this reason, we locate and quantify these contrasts by combining three different A-Train cloud-phase products for the period 2007–2010. These products rely on a spaceborne lidar, a lidar-radar synergy, and a radiometer-polarimeter synergy. We show that the cloud-phase from the product combination is more reliable and that the estimation of the hemispheric and seasonal contrast has a lower error compared to the individual products. To quantify the contrast in cloud-phase, we use the hemispheric difference in ice cloud frequency normalized by the liquid cloud frequency in the southern hemisphere between −42 °C and 0 °C. In the midlatitudes, from −15 to −30 °C, the hemispheric contrasts increase with decreasing temperature. At −30 °C, the hemispheric contrast varies from 29% to 39% for the individual cloud-phase products and from 52% to 73% for the product combination. Similarly, in the northern hemisphere, we assess the seasonal contrast between spring and fall normalized by the liquid cloud frequency during fall. At −30 °C, the seasonal contrast ranges from 21% to 39% for the individual cloud-phase products and from 54% to 75% for the product combination.
  • Item
    Global observations of 2 day wave coupling to the diurnal tide in a high‐altitude forecast‐assimilation system
    (Hoboken, NJ : Wiley, 2017-4-18) Lieberman, R.S.; Riggin, D.M.; Nguyen, V.; Palo, S.E.; Siskind, D.E.; Mitchell, N.J.; Stober, G.; Wilhelm, S.; Livesey, N.J.
    We examine wave components in a high-altitude forecast-assimilation system that arise from nonlinear interaction between the diurnal tide and the westward traveling quasi 2 day wave. The process yields a westward traveling “sum” wave with zonal wave number 4 and a period of 16 h, and an eastward traveling “difference” wave with zonal wave number 2 and a period of 2 days. While the eastward 2 day wave has been reported in satellite temperatures, the westward 16 h wave lies outside the Nyquist limits of resolution of twice daily local time satellite sampling. Hourly output from a high-altitude forecast-assimilation model is used to diagnose the nonlinear quadriad. A steady state primitive equation model forced by tide-2 day wave advection is used to intepret the nonlinear wave products. The westward 16 h wave maximizes in the midlatitude winter mesosphere and behaves like an inertia-gravity wave. The nonlinearly generated component of the eastward 2 day wave maximizes at high latitudes in the lower thermosphere, and only weakly penetrates to low latitudes. The 16 h and the eastward 2 day waves are of comparable amplitude and alias to the same apparent frequency when viewed from a satellite perspective.
  • Item
    Sources, Occurrence and Characteristics of Fluorescent Biological Aerosol Particles Measured Over the Pristine Southern Ocean
    (Hoboken, NJ : Wiley, 2021) Moallemi, Alireza; Landwehr, Sebastian; Robinson, Charlotte; Simó, Rafel; Zamanillo, Marina; Chen, Gang; Baccarini, Andrea; Schnaiter, Martin; Henning, Silvia; Modini, Robin L.; Gysel-Beer, Martin; Schmale, Julia
    In this study, we investigate the occurrence of primary biological aerosol particles (PBAP) over all sectors of the Southern Ocean (SO) based on a 90-day data set collected during the Antarctic Circumnavigation Expedition (ACE) in austral summer 2016-2017. Super-micrometer PBAP (1-16 µm diameter) were measured by a wide band integrated bioaerosol sensor (WIBS-4). Low (3σ) and high (9σ) fluorescence thresholds are used to obtain statistics on fluorescent and hyper-fluorescent PBAP, respectively. Our focus is on data obtained over the pristine ocean, that is, more than 200 km away from land. The results indicate that (hyper-)fluorescent PBAP are correlated to atmospheric variables associated with sea spray aerosol (SSA) particles (wind speed, total super-micrometer aerosol number concentration, chloride and sodium concentrations). This suggests that a main source of PBAP over the SO is SSA. The median percentage contribution of fluorescent and hyper-fluorescent PBAP to super-micrometer SSA was 1.6% and 0.13%, respectively. We demonstrate that the fraction of (hyper-)fluorescent PBAP to total super-micrometer particles positively correlates with concentrations of bacteria and several taxa of pythoplankton measured in seawater, indicating that marine biota concentrations modulate the PBAP source flux. We investigate the fluorescent properties of (hyper-)fluorescent PBAP for several events that occurred near land masses. We find that the fluorescence signal characteristics of particles near land is much more variable than over the pristine ocean. We conclude that the source and concentration of fluorescent PBAP over the open ocean is similar across all sampled sectors of the SO.
  • Item
    Using Principal Component Analysis of Satellite and Ground Magnetic Data to Model the Equatorial Electrojet and Derive Its Tidal Composition
    (Hoboken, NJ : Wiley, 2022) Soares, Gabriel; Yamazaki, Yosuke; Morschhauser, Achim; Matzka, Jürgen; Pinheiro, Katia J.; Stolle, Claudia; Alken, Patrick; Yoshikawa, Akimasa; Hozumi, Kornyanat; Kulkarni, Atul; Supnithi, Pornchai
    The intensity of the equatorial electrojet (EEJ) shows temporal and spatial variability that is not yet fully understood nor accurately modeled. Atmospheric solar tides are among the main drivers of this variability but determining different tidal components and their respective time series is challenging. It requires good temporal and spatial coverage with observations, which, previously could only be achieved by accumulating data over many years. Here, we propose a new technique for modeling the EEJ based on principal component analysis (PCA) of a hybrid ground-satellite geomagnetic data set. The proposed PCA-based model (PCEEJ) represents the observed EEJ better than the climatological EEJM-2 model, especially when there is good local time separation among the satellites involved. The amplitudes of various solar tidal modes are determined from PCEEJ based tidal equation fitting. This allows to evaluate interannual and intraannual changes of solar tidal signatures in the EEJ. On average, the obtained time series of migrating and nonmigrating tides agree with the average climatology available from earlier work. A comparison of tidal signatures in the EEJ with tides derived from neutral atmosphere temperature observations show a remarkable correlation for nonmigrating tides such as DE3, DE2, DE4, and SW4. The results indicate that it is possible to obtain a meaningful EEJ spectrum related to solar tides for a relatively short time interval of 70 days.