Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

Impact of Mn-Pn intermixing on magnetic properties of an intrinsic magnetic topological insulator: the µSR perspective

2023, Sahoo, M., Salman, Z., Allodi, G., Isaeva, A., Folkers, L., Wolter, A.U.B., Büchner, B., De Renzi, R.

We investigated the magnetic properties of polycrystalline samples of the intrinsic magnetic topological insulators MnPn2Te4, with pnictogen Pn = Sb, Bi, by bulk magnetization and μSR. DC susceptibility detects the onset of magnetic ordering at TN = 27 K and 24 K and a field dependence of the macroscopic magnetization compatible with ferri- (or ferro-) and atiferro- magnetic ordering, respectively. Weak transverse field (wTF) Muon Spin Rotation (μSR) confirms the homogeneous bulk nature of magnetic ordering at the same two distinct transition temperatures. Zero Field (ZF) μSR shows that the Sb based material displays a broader distribution of internal field at the muon, in accordance with a larger deviation from the stoichiomectric composition and a higher degree of positional disorder (Mn at the Pn(6c) site), which however does not affect significantly the sharpness of the thermodynamic transition, as detected by the muon magnetic volume fraction and the observability of a critical divergence in the longitudinal and transverse muon relaxation rates.

Loading...
Thumbnail Image
Item

Photoluminescence investigation of strictly ordered Ge dots grown on pit-patterned Si substrates

2015, Brehm, Moritz, Grydlik, Martyna, Tayagaki, Takeshi, Langer, Gregor, Schäffler, Friedrich, Schmidt, Oliver G.

We investigate the optical properties of ordered Ge quantum dots (QDs) by means of micro-photoluminescence spectroscopy (PL). These were grown on pit-patterned Si(001) substrates with a wide range of pit-periods and thus inter QD-distances (425–3400 nm). By exploiting almost arbitrary inter-QD distances achievable in this way we are able to choose the number of QDs that contribute to the PL emission in a range between 70 and less than three QDs. This well-defined system allows us to clarify, by PL-investigation, several points which are important for the understanding of the formation and optical properties of ordered QDs. We directly trace and quantify the amount of Ge transferred from the surrounding wetting layer (WL) to the QDs in the pits. Moreover, by exploiting different pit-shapes, we reveal the role of strain-induced activation energy barriers that have to be overcome for charge carriers generated outside the dots. These need to diffuse between the energy minimum of the WL in and between the pits, and the one in the QDs. In addition, we demonstrate that the WL in the pits is already severely intermixed with Si before upright QDs nucleate, which further enhances intermixing of ordered QDs as compared to QDs grown on planar substrates. Furthermore, we quantitatively determine the amount of Ge transferred by surface diffusion through the border region between planar and patterned substrate. This is important for the growth of ordered islands on patterned fields of finite size. We highlight that the Ge WL-facets in the pits act as PL emission centres, similar to upright QDs.

Loading...
Thumbnail Image
Item

Temperature gradient-induced magnetization reversal of single ferromagnetic nanowires

2017-11-17, Michel, Ann-Kathrin, Niemann, Anna Corinna, Boehnert, Tim, Martens, Stephan, Moreno, Josep M. Montero, Goerlitz, Detlef, Zierold, Robert, Reith, Heiko, Vega, Victor, Prida, Victor M., Thomas, Andy, Gooth, Johannes, Nielsch, Kornelius

In this study, we investigate the temperature- and temperature gradient-dependent magnetization reversal process of individual, single-domain Co39Ni61 and Fe15Ni85 ferromagnetic nanowires via the magneto-optical Kerr effect and magnetoresistance measurements. While the coercive fields (HC) and therefore the magnetic switching fields (HSW) generally decrease under isothermal conditions at elevated base temperatures (Tbase), temperature gradients (ΔT) along the nanowires lead to an increased switching field of up to 15% for ΔT  = 300 K in Co39Ni61 nanowires. This enhancement is attributed to a stress-induced, magneto-elastic anisotropy term due to an applied temperature gradient along the nanowire that counteracts the thermally assisted magnetization reversal process. Our results demonstrate that a careful distinction between locally elevated temperatures and temperature gradients has to be made in future heat-assisted magnetic recording devices.

Loading...
Thumbnail Image
Item

Magnetic granularity in pulsed laser deposited YBCO films on technical templates at 5 K

2017-9-4, Lao, M., Hecher, J., Pahlke, P., Sieger, M., Hühne, R., Eisterer, M.

The manifestation of granularity in the superconducting properties of pulsed laser deposited YBCO films on commercially available metallic templates was investigated by scanning Hall probe microscopy at 5 K and was related to local orientation mapping of the YBCO layer. The YBCO films on stainless steel templates with a textured buffer layer of yttrium stabilized ZrO2 grown by alternating beam assisted deposition have a mean grain size of less than with a sharp texture. This results in a homogeneous trapped field profile and spatial distribution of the current density. On the other hand, YBCO films on biaxially textured NiW substrates show magnetic granularity that persists down to a temperature of 5 K and up to an applied magnetic field of 4 T. The origin of the granular field profile is directly correlated to the microstructural properties of the YBCO layer adopted from the granular NiW substrate which leads to a spatially inhomogeneous current density. Grain-to-grain in-plane tilts lead to grain boundaries that obstruct the current while out-of-plane tilts mainly affect the grain properties, resulting in areas with low . Hence, not all grain boundaries cause detrimental effects on since the orientation of individual NiW grains also contributes to observed inhomogeneity and granularity.

Loading...
Thumbnail Image
Item

Stripe-yzmagnetic order in the triangular-lattice antiferromagnet KCeS2

2021, Kulbakov, Anton A., Avdoshenko, Stanislav M., Puente-Orench, Inés, Deeb, Mahmoud, Doerr, Mathias, Schlender, Philipp, Doert, Thomas, Inosov, Dmytro S.

Yb- and Ce-based delafossites were recently identified as effective spin-1/2 antiferromagnets on the triangular lattice. Several Yb-based systems, such as NaYbO2, NaYbS2, and NaYbSe2, exhibit no long-range order down to the lowest measured temperatures and therefore serve as putative candidates for the realization of a quantum spin liquid. However, their isostructural Ce-based counterpart KCeS2 exhibits magnetic order below TN = 400 mK, which was so far identified only in thermodynamic measurements. Here we reveal the magnetic structure of this long-range ordered phase using magnetic neutron diffraction. We show that it represents the so-called 'stripe-yz' type of antiferromagnetic order with spins lying approximately in the triangular-lattice planes orthogonal to the nearest-neighbor Ce–Ce bonds. No structural lattice distortions are revealed below TN, indicating that the triangular lattice of Ce3+ ions remains geometrically perfect down to the lowest temperatures. We propose an effective Hamiltonian for KCeS2, based on a fit to the results of ab initio calculations, and demonstrate that its magnetic ground state matches the experimental spin structure.

Loading...
Thumbnail Image
Item

Shielding Effect on Flux Trapping in Pulsed-Field Magnetizing for Mg-B Bulk Magnet

2021, Oka, T., Yamanaka, K., Sudo, K., Dadiel, L., Ogawa, J., Yokoyama, K., Häßler, W., Noudem, J., Berger, K., Sakai, N., Miryala, M., Murakami, M.

MgB2 superconducting bulk materials are characterized as simple and uniform metallic compounds, and capable of trapping field of non-distorted conical shapes. Although pulsed-field magnetization technique (PFM) is expected to be a cheap and an easy way to activate them, the heat generation due to the magnetic flux motion causes serious degradation of captured fields. The authors precisely estimated the flux trapping property of the bulk samples, found that the flux-shielding effect closely attributed to the sample dimensions. The magnetic field capturing of Ti-5.0wt% sample reached the highest value of 0.76 T. The applied field which reached the centre of the sample surface shifted from 1.0 T to 1.2 T with increasing sample thickness from 3.67 mm to 5.80 mm. This means that the shielding effect was enhanced with increasing the sample thickness. Moreover, Ti-addition affected the frequency of flux jump happenings. The occurrence of flux jumps was suppressed in 5.0wt%Ti-added sample. This means that the heat capacity of the compounds was promoted by Ti addition.

Loading...
Thumbnail Image
Item

Circular stripe domains and cone state vortices in disk-shaped exchange coupled magnetic heterostructures

2022, Zaiets, Oleksandr, Kravchuk, Volodymyr P., Pylypovskyi, Oleksandr V., Makarov, Denys, Sheka, Denis D.

Vertically stacked exchange coupled magnetic heterostructures of cylindrical geometry can host complex noncolinear magnetization patterns. By tuning the interlayer exchange coupling between a layer accommodating magnetic vortex state and an out-of-plane magnetized layer, one can efficiently realize new topological chiral textures such as cone state vortices and circular stripe domains. We study how the number of circular stripes can be controlled by both the interlayer exchange coupling and the sample geometrical parameters. By varying geometrical parameters, a continuous phase transition between the homogeneous state, cone state vortex, circular stripe domains, and the imprinted vortex takes place, which is analysed by full scale micromagnetic simulations. The analytical description provides an intuitive pictures of the magnetization textures in each of these phases. The possibility to realize switching between different states allows for engineering magnetic textures with possible applications in spintronic devices.

Loading...
Thumbnail Image
Item

Recovery of release cloud from laser shock-loaded graphite and hydrocarbon targets: in search of diamonds

2022, Schuster, A.K., Voigt, K., Klemmed, B., Hartley, N.J., Lütgert, J., Zhang, M., Bähtz, C., Benad, A., Brabetz, C., Cowan, T., Döppner, T., Erb, D.J., Eychmüller, A., Facsko, S., Falcone, R.W., Fletcher, L.B., Frydrych, S., Ganzenmüller, G.C., Gericke, D.O., Glenzer, S.H., Grenzer, J., Helbig, U., Hiermaier, S., Hübner, R., Laso Garcia, A., Lee, H.J., MacDonald, M.J., McBride, E.E., Neumayer, P., Pak, A., Pelka, A., Prencipe, I., Prosvetov, A., Rack, A., Ravasio, A., Redmer, R., Reemts, D., Rödel, M., Schoelmerich, M., Schumacher, D., Tomut, M., Turner, S.J., Saunders, A.M., Sun, P., Vorberger, J., Zettl, A., Kraus, D.

This work presents first insights into the dynamics of free-surface release clouds from dynamically compressed polystyrene and pyrolytic graphite at pressures up to 200 GPa, where they transform into diamond or lonsdaleite, respectively. These ejecta clouds are released into either vacuum or various types of catcher systems, and are monitored with high-speed recordings (frame rates up to 10 MHz). Molecular dynamics simulations are used to give insights to the rate of diamond preservation throughout the free expansion and the catcher impact process, highlighting the challenges of diamond retrieval. Raman spectroscopy data show graphitic signatures on a catcher plate confirming that the shock-compressed PS is transformed. First electron microscopy analyses of solid catcher plates yield an outstanding number of different spherical-like objects in the size range between ten(s) up to hundreds of nanometres, which are one type of two potential diamond candidates identified. The origin of some objects can unambiguously be assigned, while the history of others remains speculative.

Loading...
Thumbnail Image
Item

Magnetism in curved geometries

2016, Streubel, Robert, Fischer, Peter, Kronast, Florian, Kravchuk, Volodymyr P., Sheka, Denis D., Gaididei, Yuri, Schmidt, Oliver G., Makarov, Denys

Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii–Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.

Loading...
Thumbnail Image
Item

Topological origin of edge states in two-dimensional inversion-symmetric insulators and semimetals

2016-11-28, Miert, Guido van, Ortix, Carmine, Smith, Cristiane Morais

Symmetries play an essential role in identifying and characterizing topological states of matter. Here, we classify topologically two-dimensional (2D) insulators and semimetals with vanishing spin-orbit coupling using time-reversal (T) and inversion (I) symmetry. This allows us to link the presence of edge states in I and T symmetric 2D insulators, which are topologically trivial according to the Altland-Zirnbauer table, to a ℤ2 topological invariant. This invariant is directly related to the quantization of the Zak phase. It also predicts the generic presence of edge states in Dirac semimetals, in the absence of chiral symmetry. We then apply our findings to bilayer black phosphorus and show the occurrence of a gate-induced topological phase transition, where the ℤ2 invariant changes.