Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Coulomb exchange as source of Kitaev and off-diagonal symmetric anisotropic couplings

2024, Bhattacharyya, Pritam, Petersen, Thorben, Bogdanov, Nikolay A., Hozoi, Liviu

Exchange underpins the magnetic properties of quantum matter. In its most basic form, it occurs through the interplay of Pauli’s exclusion principle and Coulomb repulsion, being referred to as Coulomb or direct exchange. Pauli’s exclusion principle combined with inter-atomic electron hopping additionally leads to kinetic exchange and superexchange. Here we disentangle the different exchange channels in anisotropic Kitaev–Heisenberg context. By quantum chemical computations, we show that anisotropic Coulomb exchange, completely neglected so far in the field, may be as large as (or even larger than) other contributions — kinetic exchange and superexchange. This opens new perspectives onto anisotropic exchange mechanisms and sets the proper conceptual framework for further research on tuning Kitaev–Heisenberg magnetism.

Loading...
Thumbnail Image
Item

Magnetization-driven Lifshitz transition and charge-spin coupling in the kagome metal YMn6Sn6

2022, Siegfried, Peter E., Bhandari, Hari, Jones, David C., Ghimire, Madhav P., Dally, Rebecca L., Poudel, Lekh, Bleuel, Markus, Lynn, Jeffrey W., Mazin, Igor I., Ghimire, Nirmal J.

The Fermi surface (FS) is essential for understanding the properties of metals. It can change under both conventional symmetry-breaking phase transitions and Lifshitz transitions (LTs), where the FS, but not the crystal symmetry, changes abruptly. Magnetic phase transitions involving uniformly rotating spin textures are conventional in nature, requiring strong spin-orbit coupling (SOC) to influence the FS topology and generate measurable properties. LTs driven by a continuously varying magnetization are rarely discussed. Here we present two such manifestations in the magnetotransport of the kagome magnet YMn6Sn6: one caused by changes in the magnetic structure and another by a magnetization-driven LT. The former yields a 10% magnetoresistance enhancement without a strong SOC, while the latter a 45% reduction in the resistivity. These phenomena offer a unique view into the interplay of magnetism and electronic topology, and for understanding the rare-earth counterparts, such as TbMn6Sn6, recently shown to harbor correlated topological physics.

Loading...
Thumbnail Image
Item

Quantum chemical insights into hexaboride electronic structures: correlations within the boron p-orbital subsystem

2022, Petersen, Thorben, Rößler, Ulrich K., Hozoi, Liviu

The notion of strong electronic correlations arose in the context of d-metal oxides such as NiO but can be exemplified on systems as simple as the H2 molecule. Here we shed light on correlation effects on B62− clusters as found in MB6 hexaborides and show that the B 2p valence electrons are fairly correlated. B6-octahedron excitation energies computed for CaB6 and YbB6 agree with peak positions found by resonant inelastic x-ray scattering, providing a compelling picture for the latter. Our findings characterize these materials as very peculiar p-electron correlated systems and call for more involved many-body investigations within the whole hexaboride family, both alkaline- and rare-earth compounds, not only for N- but also (N ± 1)-states defining e. g. band gaps.

Loading...
Thumbnail Image
Item

Coupled mechanical oscillator enables precise detection of nanowire flexural vibrations

2023, Sharma, Maneesha, Sathyadharma Prasad, Aniruddha, Freitag, Norbert H., Büchner, Bernd, Mühl, Thomas

The field of nanowire (NW) technology represents an exciting and steadily growing research area with applications in ultra-sensitive mass and force sensing. Existing detection methods for NW deflection and oscillation include optical and field emission approaches. However, they are challenging for detecting small diameter NWs because of the heating produced by the laser beam and the impact of the high electric field. Alternatively, the deflection of a NW can be detected indirectly by co-resonantly coupling the NW to a cantilever and measuring it using a scanning probe microscope. Here, we prove experimentally that co-resonantly coupled devices are sensitive to small force derivatives similar to standalone NWs. We detect force derivatives as small as 10−9 N/m with a bandwidth of 1 Hz at room temperature. Furthermore, the measured hybrid vibration modes show clear signatures of avoided crossing. The detection technique presented in this work verifies a major step in boosting NW-based force and mass sensing.

Loading...
Thumbnail Image
Item

Stabilization mechanism of molecular orbital crystals in IrTe2

2022, Ritschel, Tobias, Stahl, Quirin, Kusch, Maximilian, Trinckauf, Jan, Garbarino, Gaston, Svitlyk, Volodymyr, Mezouar, Mohamed, Yang, Junjie, Cheong, Sang-Wook, Geck, Jochen

Doped IrTe2 is considered a platform for topological superconductivity and therefore receives currently a lot of interest. In addition, the superconductivity in these materials exists in close vicinity to electronic order and the formation of molecular orbital crystals, which we explore here by means of high-pressure single crystal x-ray diffraction in combination with density functional theory. Our crystallographic refinements provide detailed information about the structural evolution as a function of applied pressure up to 42 GPa. Using this structural information for density functional theory calculations, we show that the local multicenter bonding in IrTe2 is driven by changes in the Ir-Te-Ir bond angle. When the electronic order sets in, this bond angle decreases drastically, leading to a stabilization of a multicenter molecular orbital bond. This unusual local mechanism of bond formation in an itinerant material provides a natural explanation for the different electronic orders in IrTe2. It further illustrates the strong coupling of the electrons with the lattice and is most likely relevant for the superconductivity in this material.

Loading...
Thumbnail Image
Item

Quantum critical fluctuations in an Fe-based superconductor

2022, Jost, Daniel, Peis, Leander, He, Ge, Baum, Andreas, Geprägs, Stephan, Palmstrom, Johanna C., Ikeda, Matthias S., Fisher, Ian R., Wolf, Thomas, Lederer, Samuel, Kivelson, Steven A., Hackl, Rudi

Quantum critical fluctuations may prove to play an instrumental role in the formation of unconventional superconductivity. Here, we show that the characteristic scaling of a marginal Fermi liquid is present in inelastic light scattering data of an Fe-based superconductor tuned through a quantum critical point (QCP) by chemical substitution or doping. From the doping dependence of the imaginary time dynamics we are able to distinguish regions dominated by quantum critical behavior from those having classical critical responses. This dichotomy reveals a connection between the marginal Fermi liquid behavior and quantum criticality. In particular, the overlap between regions of high superconducting transition temperatures and quantum critical scaling suggests a contribution from quantum fluctuations to the formation of superconductivity.

Loading...
Thumbnail Image
Item

Simultaneous magnetic field and field gradient mapping of hexagonal MnNiGa by quantitative magnetic force microscopy

2023, Freitag, Norbert H., Reiche, Christopher F., Neu, Volker, Devi, Parul, Burkhardt, Ulrich, Felser, Claudia, Wolf, Daniel, Lubk, Axel, Büchner, Bernd, Mühl, Thomas

Magnetic force microscopy (MFM) is a scanning microscopy technique that is commonly employed to probe the sample’s magnetostatic stray fields via their interaction with a magnetic probe tip. In this work, a quantitative, single-pass MFM technique is presented that maps one magnetic stray-field component and its spatial derivative at the same time. This technique uses a special cantilever design and a special high-aspect-ratio magnetic interaction tip that approximates a monopole-like moment. Experimental details, such as the control scheme, the sensor design, which enables simultaneous force and force gradient measurements, as well as the potential and limits of the monopole description of the tip moment are thoroughly discussed. To demonstrate the merit of this technique for studying complex magnetic samples it is applied to the examination of polycrystalline MnNiGa bulk samples. In these experiments, the focus lies on mapping and analyzing the stray-field distribution of individual bubble-like magnetization patterns in a centrosymmetric [001] MnNiGa phase. The experimental data is compared to calculated and simulated stray-field distributions of 3D magnetization textures, and, furthermore, bubble dimensions including diameters are evaluated. The results indicate that the magnetic bubbles have a significant spatial extent in depth and a buried bubble top base.