Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

Synthesis and Characterization of Oxide Chloride Sr2VO3Cl, a Layered S = 1 Compound

2023, Sannes, Johnny A., Kizhake Malayil, Ranjith K., Corredor, Laura T., Wolter, Anja U. B., Grafe, Hans-Joachim, Valldor, Martin

The mixed-anion compound with composition Sr2VO3Cl has been synthesized for the first time, using the conventional high-temperature solid-state synthesis technique in a closed silica ampule under inert conditions. This compound belongs to the known Sr2TmO3Cl (Tm = Sc, Mn, Fe, Co, Ni) family, but with Tm = V. All homologues within this family can be described with the tetragonal space group P4/nmm (No. 129); from a Rietveld refinement of powder X-ray diffraction data on the Tm = V homologue, the unit cell parameters were determined to a = 3.95974(8) and c = 14.0660(4) Å, and the atomic parameters in the crystal structure could be estimated. The synthesized powder is black, implying that the compound is a semiconductor. The magnetic investigations suggest that Sr2VO3Cl is a paramagnet at high temperatures, exhibiting a μeff = 2.0 μB V-1 and antiferromagnetic (AFM) interactions between the magnetic vanadium spins (θCW = −50 K), in line with the V-O-V advantageous super-exchange paths in the V-O layers. Specific heat capacity studies indicate two small anomalies around 5 and 35 K, which however are not associated with long-range magnetic ordering. 35Cl ss-NMR investigations suggest a slow spin freezing below 4.2 K resulting in a glassy-like spin ground state.

Loading...
Thumbnail Image
Item

Graphene transfer methods: A review

2021, Ullah, Sami, Yang, Xiaoqin, Ta, Huy Q., Hasan, Maria, Bachmatiuk, Alicja, Tokarska, Klaudia, Trzebicka, Barbara, Fu, Lei, Rummeli, Mark H.

Graphene is a material with unique properties that can be exploited in electronics, catalysis, energy, and bio-related fields. Although, for maximal utilization of this material, high-quality graphene is required at both the growth process and after transfer of the graphene film to the application-compatible substrate. Chemical vapor deposition (CVD) is an important method for growing high-quality graphene on non-technological substrates (as, metal substrates, e.g., copper foil). Thus, there are also considerable efforts toward the efficient and non-damaging transfer of quality of graphene on to technologically relevant materials and systems. In this review article, a range of graphene current transfer techniques are reviewed from the standpoint of their impact on contamination control and structural integrity preservation of the as-produced graphene. In addition, their scalability, cost- and time-effectiveness are discussed. We summarize with a perspective on the transfer challenges, alternative options and future developments toward graphene technology.

Loading...
Thumbnail Image
Item

Freestanding Nanolayers of a Wide-Gap Topological Insulator through Liquid-Phase Exfoliation

2021, Lê Anh, Mai, Potapov, Pavel, Wolf, Daniel, Lubk, Axel, Glatz, Bernhard, Fery, Andreas, Doert, Thomas, Ruck, Michael

The layered salt Bi14Rh3I9 is a weak three-dimensional (3D) topological insulator (TI), that is, a stack of two-dimensional (2D) TIs. It has a wide non-trivial band gap of 210 meV, which is generated by strong spin-orbit coupling, and possesses protected electronic edge-states. In the structure, charged layers of (Formula presented.) (Bi4Rh)3I]2+ honeycombs and (Formula presented.) Bi2I8]2− chains alternate. The non-trivial topology of Bi14Rh3I9 is an inherent property of the 2D intermetallic fragment. Here, the exfoliation of Bi14Rh3I9 was performed using two different chemical approaches: (a) through a reaction with n-butyllithium and poly(vinylpyrrolidone), (b) through a reaction with betaine in dimethylformamide at 55 °C. The former yielded few-layer sheets of the new compound Bi12Rh3I, while the latter led to crystalline sheets of Bi14Rh3I9 with a thickness down to 5 nm and edge-lengths up to several ten microns. X-ray diffraction and electron microscopy proved that the structure of Bi14Rh3I9 remained intact. Thus, it was assumed that the particles are still TIs. Dispersions of these flakes now allow for next steps towards the envisioned applications in nanoelectronics, such as the study of quantum coherence in deposited films, the combination with superconducting particles or films for the generation of Majorana fermions, or studies on their behavior under the influence of magnetic or electric fields or in contact with various materials occurring in devices. The method presented generally allows to exfoliate layers with high specific charges and thus the use of layered starting materials beyond van der Waals crystals. © 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Freestanding MXene‐based macroforms for electrochemical energy storage applications

2023, Lu, Qiongqiong, Liu, Congcong, Zhao, Yirong, Pan, Wengao, Xie, Kun, Yue, Pengfei, Zhang, Guoshang, Omar, Ahmad, Liu, Lixiang, Yu, Minghao, Mikhailova, Daria

Freestanding MXene-based macroforms have gained significant attention as versatile components in electrochemical energy storage applications owing to their interconnected conductive network, strong mechanical strength, and customizable surface chemistries derived from MXene nanosheets. This comprehensive review article encompasses key aspects related to the synthesis of MXene nanosheets, strategies for structure design and surface medication, surface modification, and the diverse fabrication methods employed to create freestanding MXene-based macroform architectures. The review also delves into the recent advancements in utilizing freestanding MXene macroforms for electrochemical energy storage applications, offering a detailed discussion on the significant progress achieved thus far. Notably, the correlation between the macroform's structural attributes and its performance characteristics is thoroughly explored, shedding light on the critical factors influencing efficiency and durability. Despite the remarkable development, the review also highlights the existing challenges and presents future perspectives for freestanding MXene-based macroforms in the realms of high-performance energy storage devices. By addressing these challenges and leveraging emerging opportunities, the potential of freestanding MXene-based macroforms can be harnessed to enable groundbreaking advancements in the field of energy storage.

Loading...
Thumbnail Image
Item

Optical Anisotropy and Momentum-Dependent Excitons in Dibenzopentacene Single Crystals

2022, Graf, Lukas, Liu, Fupin, Naumann, Marco, Roth, Friedrich, Debnath, Bipasha, Büchner, Bernd, Krupskaya, Yulia, Popov, Alexey A., Knupfer, Martin

High-quality single crystals of the organic semiconductor (1,2;8,9)-dibenzopentacene were grown via physical vapor transport. The crystal structure─unknown before─was determined by single-crystal X-ray diffraction; polarization-dependent optical absorption measurements display a large anisotropy in the ac plane of the crystals. The overall Davydov splitting is ∼110 meV, which is slightly lower than that in the close relative pentacene (120 meV). Momentum-dependent electron energy-loss spectroscopy measurements show a clear exciton dispersion of the Davydov components. An analysis of the dispersion using a simple 1D model indicates smaller electron- and hole-transfer integrals in dibenzopentacene as compared to pentacene. The spectral weight distribution of the excitation spectra is strongly momentum-dependent and demonstrates a strong momentum-dependent admixture of Frenkel excitons, charge-transfer excitons, and vibrational modes.

Loading...
Thumbnail Image
Item

Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries

2021, Soltani, Niloofar, Bahrami, Amin, Giebeler, Lars, Gemming, Thomas, Mikhailova, Daria

Rechargeable lithium-ion batteries (LIBs) are one of the most promising alternatives to effectively bypass fossil fuels. However, long-term energy application of LIBs could be restricted in the future due to the increased production cost of LIB arising from the shortage and inaccessibility of Li in the Earth's crust. Na or K have been considered as substitutes for Li but in spite of their natural abundance, they suffer from low gravimetric/volumetric energy density. An alternative to increase the efficiency of sodium-ion battery (SIBs) and potassium-ion battery (KIBs) is to focus on finding the high‐performing negative electrode, the anode. The large volume changes of alloying and conversion type anodes for KIBs and SIBs make hard carbons to a better option on this regard than usual graphitic carbons, but a key obstacle is the reliance on unsustainable sources. Thus, biomass-derived carbon could offer a promising alternative, and it has indeed been in the focus of much recent work. This review highlights the recent advances in using carbon extracted from various biomass sources in rechargeable Li-, Na-, and K-ion batteries. Maximizing the energy and power densities as well as the lifetime of carbon anodes require an exploration of the right balance between carbon structures, pore morphology, chemical composition and alkali metal-ion storage. Thus, in this review, first, we take stock of key challenges and opportunities to extract carbon from various plants structural components and identify the extracted carbon structure compared to graphite-like structure. Then, we provide an overview on morphological and structural modification of the extracted carbons. Finally, we show how the physicochemical properties, structural alignment and morphological variation of the biomass-derived carbon can affect the storage mechanism and electrochemical performance. The extensive overview of this topic provided here is expected to stimulate further work on environmentally friendly battery design and towards the optimization of the battery performance. Electrode materials in alkali-metal-ion batteries that are based on biomass-derived carbon may allow not only a technical breakthrough, but also an ethically and socially acceptable product.

Loading...
Thumbnail Image
Item

Water-Free SbOx ALD Process for Coating Bi2Te3 Particle

2023, Lehmann, Sebastian, Mitzscherling, Fanny, He, Shiyang, Yang, Jun, Hantusch, Martin, Nielsch, Kornelius, Bahrami, Amin

We developed a water-free atomic layer deposition (ALD) process to homogeneously deposit SbOx using SbCl5 and Sb-Ethoxide as precursors, and report it here for the first time. The coating is applied on Bi2Te3 particles synthesized via the solvothermal route to enhance the thermoelectric properties (i.e., Seebeck coefficient, thermal and electrical conductivity) via interface engineering. The amorphous character of the coating was shown by the missing reflexes on the X-ray diffractograms (XRD). A shift from the oxidation state +III to +V of the Sb species was observed using X-ray photoelectron spectroscopy (XPS), indicating increased thickness of the SbOx coating layer. Additionally, a peak shift of the Sb 3d5/2 + O 1s peak indicated increased n-type doping of the material. Electrical measurements of spark plasma-sintered bulk samples confirmed the doping effect on the basis of decreased specific resistivity with increasing SbOx layer thickness. The Seebeck coefficient was improved for the coated sample with 500 cycles of SbOx, while the total thermal conductivity was reduced, resulting in enhancement of the zT. The results distinctly show that surface engineering via powder ALD is an effective tool for improving key properties of thermoelectric materials like electrical conductivity and the Seebeck coefficient.

Loading...
Thumbnail Image
Item

Applications of MXenes in human-like sensors and actuators

2022, Pang, Jinbo, Peng, Songang, Hou, Chongyang, Wang, Xiao, Wang, Ting, Cao, Yu, Zhou, Weijia, Sun, Ding, Wang, Kai, Rümmeli, Mark H., Cuniberti, Gianaurelio, Liu, Hong

Human beings perceive the world through the senses of sight, hearing, smell, taste, touch, space, and balance. The first five senses are prerequisites for people to live. The sensing organs upload information to the nervous systems, including the brain, for interpreting the surrounding environment. Then, the brain sends commands to muscles reflexively to react to stimuli, including light, gas, chemicals, sound, and pressure. MXene, as an emerging two-dimensional material, has been intensively adopted in the applications of various sensors and actuators. In this review, we update the sensors to mimic five primary senses and actuators for stimulating muscles, which employ MXene-based film, membrane, and composite with other functional materials. First, a brief introduction is delivered for the structure, properties, and synthesis methods of MXenes. Then, we feed the readers the recent reports on the MXene-derived image sensors as artificial retinas, gas sensors, chemical biosensors, acoustic devices, and tactile sensors for electronic skin. Besides, the actuators of MXene-based composite are introduced. Eventually, future opportunities are given to MXene research based on the requirements of artificial intelligence and humanoid robot, which may induce prospects in accompanying healthcare and biomedical engineering applications. [Figure not available: see fulltext.]

Loading...
Thumbnail Image
Item

Designing Gallium-Containing Hydroxyapatite Coatings on Low Modulus Beta Ti-45Nb Alloy

2023, Vishnu, Jithin, Voss, Andrea, Hoffmann, Volker, Alberta, Ludovico Andrea, Akman, Adnan, Shankar, Balakrishnan, Gebert, Annett, Calin, Mariana

Low-modulus β-type Ti-45Nb alloy is a promising implant material due to its good mechanical biocompatibility, non-toxicity, and outstanding corrosion resistance. Its excellent chemical stability brings new challenges to chemical surface modification treatments, which are indispensable for both osteogenesis and antibacterial performance. Coatings containing metal ions as anti-microbial agents can be an effective way to reduce implant-associated infections caused by bacterial biofilm. Gallium ion (Ga3+) has the potential to reduce bacterial viability and biofilm formation on implant surfaces. In this study, a novel two-step process has been proposed for Ga3+ incorporation in hydroxyapatite (HAP) to develop bioactive and antibacterial surfaces on Ti-45Nb alloy. For the generation of bioactive surface states, HAP electrodeposition was conducted, followed by wet chemical immersion treatments in gallium nitrate (1 mM). Different buffers such as phosphate, sodium bicarbonate, ammonium acetate, and citrate were added to the solution to maintain a pH value in the range of 6.5–6.9. Coating morphology and HAP phases were retained after treatment with gallium nitrate, and Ga3+ ion presence on the surface up to 1 wt.% was confirmed. Combining Ga and HAP shows great promise to enable the local delivery of Ga3+ ions and consequent antibacterial protection during bone regeneration, without using growth factors or antibiotics.

Loading...
Thumbnail Image
Item

Single-atom catalytic growth of crystals using graphene as a case study

2021, Yang, Xiaoqin, Liu, Yu, Ta, Huy Q., Rezvani, Ehsan, Zhang, Yue, Zeng, Mengqi, Fu, Lei, Bachmatiuk, Alicja, Luo, Jinping, Liu, Lijun, Rümmeli, Mark H.

Anchored Single-atom catalysts have emerged as a cutting-edge research field holding tremendous appeal for applications in the fields of chemicals, energy and the environment. However, single-atom-catalysts for crystal growth is a nascent field. Of the few studies available, all of them are based on state-of-the-art in situ microscopy investigations and computational studies, and they all look at the growth of monolayer graphene from a single-atom catalyst. Despite the limited number of studies, they do, collectively, represent a new sub-field of single-atom catalysis, namely single-atom catalytic growth of crystalline solids. In this review, we examine them on substrate-supported and as freestanding graphene fabrication, as well as rolled-up graphene, viz., single-walled carbon nanotubes (SWCNT), grown from a single atom. We also briefly discuss the catalytic etching of graphene and SWCNT’s and conclude by outlining the future directions we envision this nascent field to take.