Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Nonlinear dynamical properties of frequency swept fiber-based semiconductor lasers

2021, Slepneva, Svetlana, Pimenov, Alexander

We investigate dynamics of semiconductor lasers with fiber-based unidirectional ring cavity that can be used as frequency swept sources. We identify key factors behind the reach dynamical behavior of such lasers using state-of-the-art experimental and analytical methods. Experimentally, we study the laser in static, quasi-static and synchronization regimes. We apply experimental methods such as optical heterodyne or electric field reconstruction in order to characterize these regimes or study the mechanisms of transition between them. Using a delay differential equation model, we demonstrate that the presence of chromatic dispersion can lead to destabilization of the laser modes through modulational instability, which results in undesirable chaotic emission. We characterize the instability threshold both theoretically and experimentally, and demonstrate deterioration of the Fourier domain mode locking regime near the threshold.

Loading...
Thumbnail Image
Item

A unified and automated approach to attractor reconstruction

2021, Kraemer, K. H., Datseris, G., Kurths, J., Kiss, I. Z., Ocampo-Espindola, J. L., Marwan, N.

We present a fully automated method for the optimal state space reconstruction from univariate and multivariate time series. The proposed methodology generalizes the time delay embedding procedure by unifying two promising ideas in a symbiotic fashion. Using non-uniform delays allows the successful reconstruction of systems inheriting different time scales. In contrast to the established methods, the minimization of an appropriate cost function determines the embedding dimension without using a threshold parameter. Moreover, the method is capable of detecting stochastic time series and, thus, can handle noise contaminated input without adjusting parameters. The superiority of the proposed method is shown on some paradigmatic models and experimental data from chaotic chemical oscillators.

Loading...
Thumbnail Image
Item

Basin stability and limit cycles in a conceptual model for climate tipping cascades

2020, Wunderling, Nico, Gelbrecht, Maximilian, Winkelmann, Ricarda, Kurths, Jürgen, Donges, Jonathan F.

Tipping elements in the climate system are large-scale subregions of the Earth that might possess threshold behavior under global warming with large potential impacts on human societies. Here, we study a subset of five tipping elements and their interactions in a conceptual and easily extendable framework: the Greenland Ice Sheets (GIS) and West Antarctic Ice Sheets, the Atlantic meridional overturning circulation (AMOC), the El–Niño Southern Oscillation and the Amazon rainforest. In this nonlinear and multistable system, we perform a basin stability analysis to detect its stable states and their associated Earth system resilience. By combining these two methodologies with a large-scale Monte Carlo approach, we are able to propagate the many uncertainties associated with the critical temperature thresholds and the interaction strengths of the tipping elements. Using this approach, we perform a system-wide and comprehensive robustness analysis with more than 3.5 billion ensemble members. Further, we investigate dynamic regimes where some of the states lose stability and oscillations appear using a newly developed basin bifurcation analysis methodology. Our results reveal that the state of four or five tipped elements has the largest basin volume for large levels of global warming beyond 4 °C above pre-industrial climate conditions, representing a highly undesired state where a majority of the tipping elements reside in the transitioned regime. For lower levels of warming, states including disintegrated ice sheets on west Antarctica and Greenland have higher basin volume than other state configurations. Therefore in our model, we find that the large ice sheets are of particular importance for Earth system resilience. We also detect the emergence of limit cycles for 0.6% of all ensemble members at rare parameter combinations. Such limit cycle oscillations mainly occur between the GIS and AMOC (86%), due to their negative feedback coupling. These limit cycles point to possibly dangerous internal modes of variability in the climate system that could have played a role in paleoclimatic dynamics such as those unfolding during the Pleistocene ice age cycles.