Search Results

Now showing 1 - 3 of 3
  • Item
    What is the speed limit of martensitic transformations?
    (Abingdon : Taylor & Francis, 2022) Schwabe, Stefan; Lünser, Klara; Schmidt, Daniel; Nielsch, Kornelius; Gaal, Peter; Fähler, Sebastian
    Structural martensitic transformations enable various applications, which range from high stroke actuation and sensing to energy efficient magnetocaloric refrigeration and thermomagnetic energy harvesting. All these emerging applications benefit from a fast transformation, but up to now their speed limit has not been explored. Here, we demonstrate that a thermoelastic martensite to austenite transformation can be completed within 10 ns. We heat epitaxial Ni-Mn-Ga films with a nanosecond laser pulse and use synchrotron diffraction to probe the influence of initial temperature and overheating on transformation rate and ratio. We demonstrate that an increase in thermal energy drives this transformation faster. Though the observed speed limit of 2.5 × 1027 (Js)1 per unit cell leaves plenty of room for further acceleration of applications, our analysis reveals that the practical limit will be the energy required for switching. Thus, martensitic transformations obey similar speed limits as in microelectronics, as expressed by the Margolus–Levitin theorem.
  • Item
    Thermo-responsive cell culture carriers based on poly(vinyl methyl ether) - The effect of biomolecular ligands to balance cell adhesion and stimulated detachment
    (Abingdon : Taylor & Francis, 2015) Teichmann, Juliane; Nitschke, Mirko; Pette, Dagmar; Valtink, Monika; Gramm, Stefan; Härtel, Frauke V.; Noll, Thomas; Funk, Richard H.W.; Engelmann, Katrin; Werner, Carsten
    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na+/K+-ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty.
  • Item
    Can gadolinium compete with La-Fe-Co-Si in a thermomagnetic generator?
    (Abingdon : Taylor & Francis, 2021) Dzekan, Daniel; Diestel, Anett; Berger, Dietmar; Nielsch, Kornelius; Fähler, Sebastian
    A thermomagnetic generator is a promising technology to harvest low-grade waste heat and convert it into electricity. To make this technology competitive with other technologies for energy harvesting near room temperature, the optimum thermomagnetic material is required. Here we compare the performance of a state of the art thermomagnetic generator using gadolinium and La-Fe-Co-Si as thermomagnetic material, which exhibit strong differences in thermal conductivity and type of magnetic transition. gadolinium is the established benchmark material for magnetocaloric cooling, which follows the reverse energy conversion process as compared to thermomagnetic energy harvesting. Surprisingly, La-Fe-Co-Si outperforms gadolinium in terms of voltage and power output. Our analysis reveals the differences in thermal conductivity are less important than the particular shape of the magnetization curve. In gadolinium an unsymmetrical magnetization curve is responsible for an uncompensated magnetic flux, which results in magnetic stray fields. These stray fields represent an energy barrier in the thermodynamic cycle and reduce the output of the generator. Our detailed experiments and simulations of both, thermomagnetic materials and generator, clearly reveal the importance to minimize magnetic stray fields. This is only possible when using materials with a symmetrical magnetization curve, such as La-Fe-Co-Si.