Search Results

Now showing 1 - 4 of 4
  • Item
    3D-Printing of Structure-Controlled Antigen Nanoparticles for Vaccine Delivery
    (Columbus, Ohio : American Chemical Soc., 2020) Nishiguchi, Akihiro; Shima, Fumiaki; Singh, Smriti; Akashi, Mitsuru; Moeller, Martin
    Targeted delivery of antigens to immune cells using micro/nanocarriers may serve as a therapeutic application for vaccination. However, synthetic carriers have potential drawbacks including cytotoxicity, low encapsulation efficiency of antigen, and lack of a morphological design, which limit the translation of the delivery system to clinical use. Here, we report a carrier-free and three-dimensional (3D)-shape-designed antigen nanoparticle by multiphoton lithography-based 3D-printing. This simple, versatile 3D-printing approach provides freedom for the precise design of particle shapes with a nanoscale resolution. Importantly, shape-designed antigen nanoparticles with distinct aspect ratios show shape-dependent immune responses. The 3D-printing approach for the rational design of nanomaterials with increasing safety, complexity, and efficacy offers an emerging platform to develop vaccine delivery systems and mechanistic understanding.
  • Item
    Sortase-Mediated Ligation of Purely Artificial Building Blocks
    (Basel : MDPI, 2018) Dai, Xiaolin; Mate, Diana M.; Glebe, Ulrich; Mirzaei Garakani, Tayebeh; Körner, Andrea; Schwaneberg, Ulrich; Böker, Alexander
    Sortase A (SrtA) from Staphylococcus aureus has been often used for ligating a protein with other natural or synthetic compounds in recent years. Here we show that SrtA-mediated ligation (SML) is universally applicable for the linkage of two purely artificial building blocks. Silica nanoparticles (NPs), poly(ethylene glycol) and poly(N-isopropyl acrylamide) are chosen as synthetic building blocks. As a proof of concept, NP–polymer, NP–NP, and polymer–polymer structures are formed by SrtA catalysis. Therefore, the building blocks are equipped with the recognition sequence needed for SrtA reaction—the conserved peptide LPETG—and a pentaglycine motif. The successful formation of the reaction products is shown by means of transmission electron microscopy (TEM), matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-ToF MS), and dynamic light scattering (DLS). The sortase catalyzed linkage of artificial building blocks sets the stage for the development of a new approach to link synthetic structures in cases where their synthesis by established chemical methods is complicated.
  • Item
    Biofunctionalized zinc peroxide (ZnO2) nanoparticles as active oxygen sources and antibacterial agents
    (London : RSC Publishing, 2017) Bergs, Christian; Brück, Lisa; Rosencrantz, Ruben R.; Conrads, Georg; Elling, Lothar; Pich, Andrij
    Oxygen is one of the most important substances for physiological reactions and metabolisms in biological systems. Through the tailored design of oxygen-releasing materials it might be possible to control different biological processes. In this work we synthesized for the first time zinc peroxide nanoparticles with controlled sizes and biofunctionalized surfaces using a one-step reaction procedure. The zinc peroxide nanoparticles were obtained with tunable sizes (between 4.0 ± 1.2 nm and 9.4 ± 5.2 nm) and were decorated with glucose 1-phosphate (Glc-1P). The specific interaction of the phosphate function of Glc-1P with the nanoparticle surface was monitored by solid state 31P-NMR and zeta-potential measurements. Furthermore, using fluorescence measurements we demonstrated that anchored glucose molecules on the nanoparticle surface are accessible for specific interactions with lectins. It could be shown that these interactions strongly depend on the amount of Glc-1P attached to the nanoparticle surface. Additionally it was demonstrated that the oxygen release from biofunctionalized zinc peroxide nanoparticles could be tuned according to the chemical composition of the nanoparticles and the pH of the aqueous solution. The antibacterial efficiency of the synthesized nanoparticles against Enterococcus faecalis, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia was evaluated by determination of minimal bactericidal concentration (MIC).
  • Item
    Reorientation mechanisms of block copolymer/CdSe quantum dot composites under application of an electric field
    (London : Royal Soc. of Chemistry, 2016) Kathrein, Christine C.; Pester, Christian; Ruppel, Markus; Jung, Maike; Zimmermann, Marc; Böker, Alexander
    Time- and temperature-resolved in situ birefringence measurements were applied to analyze the effect of nanoparticles on the electric field-induced alignment of a microphase separated solution of poly(styrene)-block-poly(isoprene) in toluene. Through the incorporation of isoprene-confined CdSe quantum dots the reorientation behavior is altered. Particle loading lowers the order–disorder transition temperature, and increases the defect density, favoring nucleation and growth as an alignment mechanism over rotation of grains. The temperature dependent alteration in the reorientation mechanism is analyzed via a combination of birefringence and synchrotron SAXS. The detailed understanding of the effect of nanoparticles on the reorientation mechanism is an important prerequisite for optimization of electric-field-induced alignment of block copolymer/nanoparticle composites where the block copolymer guides the nanoparticle self-assembly into anisotropic structures.