Search Results

Now showing 1 - 9 of 9
  • Item
    Microparticle Manipulation and Imaging through a Self-Calibrated Liquid Crystal on Silicon Display
    (Basel : MDPI, 2018-11-20) Zhang, Haolin; Lizana, Angel; Van Eeckhout, Albert; Turpin, Alex; Ramirez, Claudio; Iemmi, Claudio; Campos, Juan
    We present in this paper a revision of three different methods we conceived in the framework of liquid crystal on silicon (LCoS) display optimization and application. We preliminarily demonstrate an LCoS self-calibration technique, from which we can perform a complete LCoS characterization. In particular, two important characteristics of LCoS displays are retrieved by using self-addressed digital holograms. On the one hand, we determine its phase-voltage curve by using the interference pattern generated by a digital two-sectorial split-lens configuration. On the other hand, the LCoS surface profile is also determined by using a self-addressed dynamic micro-lens array pattern. Second, the implementation of microparticle manipulation through optical traps created by an LCoS display is demonstrated. Finally, an LCoS display based inline (IL) holographic imaging system is described. By using the LCoS display to implement a double-sideband filter configuration, this inline architecture demonstrates the advantage of obtaining dynamic holographic imaging of microparticles independently of their spatial positions by avoiding the non-desired conjugate images.
  • Item
    Machine learning-based calibration of the GOCE satellite platform magnetometers
    (Heidelberg : Springer, 2022) Styp-Rekowski, Kevin; Michaelis, Ingo; Stolle, Claudia; Baerenzung, Julien; Korte, Monika; Kao, Odej
    Additional datasets from space-based observations of the Earth’s magnetic field are of high value to space physics and geomagnetism. The use of platform magnetometers from non-dedicated satellites has recently successfully provided additional spatial and temporal coverage of the magnetic field. The Gravity and steady-state Ocean Circulation Explorer (GOCE) mission was launched in March 2009 and ended in November 2013 with the purpose of measuring the Earth’s gravity field. It also carried three platform magnetometers onboard. Careful calibration of the platform magnetometers can remove artificial disturbances caused by other satellite payload systems, improving the quality of the measurements. In this work, a machine learning-based approach is presented that uses neural networks to achieve a calibration that can incorporate a variety of collected information about the satellite system. The evaluation has shown that the approach is able to significantly reduce the calibration residual with a mean absolute residual of about 6.47nT for low- and mid-latitudes. In addition, the calibrated platform magnetometer data can be used for reconstructing the lithospheric field, due to the low altitude of the mission, and also observing other magnetic phenomena such as geomagnetic storms. Furthermore, the inclusion of the calibrated platform magnetometer data also allows improvement of geomagnetic field models. The calibrated dataset is published alongside this work. Graphical Abstract: [Figure not available: see fulltext.].
  • Item
    Evaluation of surface nuclear magnetic resonance-estimated subsurface water content
    ([London] : IOP, 2011) Müller-Petke, M.; Dlugosch, R.; Yaramanci, U.
    The technique of nuclear magnetic resonance (NMR) has found widespread use in geophysical applications for determining rock properties (e.g. porosity and permeability) and state variables (e.g. water content) or to distinguish between oil and water. NMR measurements are most commonly made in the laboratory and in boreholes. The technique of surface NMR (or magnetic resonance sounding (MRS)) also takes advantage of the NMR phenomenon, but by measuring subsurface rock properties from the surface using large coils of some tens of meters and reaching depths as much as 150 m. We give here a brief review of the current state of the art of forward modeling and inversion techniques. In laboratory NMR a calibration is used to convert measured signal amplitudes into water content. Surface NMR-measured amplitudes cannot be converted by a simple calibration. The water content is derived by comparing a measured amplitude with an amplitude calculated for a given subsurface water content model as input for a forward modeling that must account for all relevant physics. A convenient option to check whether the measured signals are reliable or the forward modeling accounts for all effects is to make measurements in a well-defined environment. Therefore, measurements on top of a frozen lake were made with the latest-generation surface NMR instruments. We found the measured amplitudes to be in agreement with the calculated amplitudes for a model of 100 % water content. Assuming then both the forward modeling and the measurement to be correct, the uncertainty of the model is calculated with only a few per cent based on the measurement uncertainty.
  • Item
    Mueller matrix imaging microscope using dual continuously rotating anisotropic mirrors
    (Washington, DC : Soc., 2021) Ruder, Alexander; Wright, Brandon; Feder, Rene; Kilic, Ufuk; Hilfiker, Matthew; Schubert, Eva; Herzinger, Craig M.; Schubert, Mathias
    We demonstrate calibration and operation of a Mueller matrix imaging microscope using dual continuously rotating anisotropic mirrors for polarization state generation and analysis. The mirrors contain highly spatially coherent nanostructure slanted columnar titanium thin films deposited onto optically thick titanium layers on quartz substrates. The first mirror acts as polarization state image generator and the second mirror acts as polarization state image detector. The instrument is calibrated using samples consisting of laterally homogeneous properties such as straight-through-air, a clear aperture linear polarizer, and a clear aperture linear retarder waveplate. Mueller matrix images are determined for spatially varying anisotropic samples consisting of a commercially available (Thorlabs) birefringent resolution target and a spatially patterned titanium slanted columnar thin film deposited onto a glass substrate. Calibration and operation are demonstrated at a single wavelength (530 nm) only, while, in principle, the instrument can operate regardless of wavelength. We refer to this imaging ellipsometry configuration as rotating-anisotropic-mirror-sample-rotating-anisotropic-mirror ellipsometry (RAM-S-RAM-E).
  • Item
    Linear chirped slope profile for spatial calibration in slope measuring deflectometry
    (Melville, NY : American Institute of Physics, 2016) Siewert, F.; Zeschke, T.; Arnold, T.; Paetzelt, H; Yashchuk, V.V.
    Slope measuring deflectometry is commonly used by the X-ray optics community to measure the long-spatial-wavelength surface figure error of optical components dedicated to guide and focus X-rays under grazing incidence condition at synchrotron and free electron laser beamlines. The best performing instruments of this kind are capable of absolute accuracy on the level of 30-50 nrad. However, the exact bandwidth of the measurements, determined at the higher spatial frequencies by the instrument’s spatial resolution, or more generally by the instrument’s modulation transfer function (MTF) is hard to determine. An MTF calibration method based on application of a test surface with a one-dimensional (1D) chirped height profile of constant amplitude was suggested in the past. In this work, we propose a new approach to designing the test surfaces with a 2D-chirped topography, specially optimized for MTF characterization of slope measuring instruments. The design of the developed MTF test samples based on the proposed linear chirped slope profiles (LCSPs) is free of the major drawback of the 1D chirped height profiles, where in the slope domain, the amplitude strongly increases with the local spatial frequency of the profile. We provide the details of fabrication of the LCSP samples. The results of first application of the developed test samples to measure the spatial resolution of the BESSY-NOM at different experimental arrangements are also presented and discussed.
  • Item
    Assessment of shifted excitation Raman difference spectroscopy in highly fluorescent biological samples
    (Cambridge : Soc., 2021) Korinth, Florian; Shaik, Tanveer Ahmed; Popp, Jürgen; Krafft, Christoph
    Shifted excitation Raman difference spectroscopy (SERDS) can be used as an instrumental baseline correction technique to retrieve Raman bands in highly fluorescent samples. Genipin (GE) cross-linked equine pericardium (EP) was used as a model system since a blue pigment is formed upon cross-linking, which results in a strong fluorescent background in the Raman spectra. EP was cross-linked with 0.25% GE solution for 0.5 h, 2 h, 4 h, 6 h, 12 h, and 24 h, and compared with corresponding untreated EP. Raman spectra were collected with three different excitation wavelengths. For the assessment of the SERDS technique, the preprocessed SERDS spectra of two excitation wavelengths (784 nm-786 nm) were compared with the mathematical baseline-corrected Raman spectra at 785 nm excitation using extended multiplicative signal correction, rubberband, the sensitive nonlinear iterative peak and polynomial fitting algorithms. Whereas each baseline correction gave poor quality spectra beyond 6 h GE crosslinking with wave-like artefacts, the SERDS technique resulted in difference spectra, that gave superior reconstructed spectra with clear collagen and resonance enhanced GE pigment bands with lower standard deviation. Key for this progress was an advanced difference optimization approach that is described here. Furthermore, the results of the SERDS technique were independent of the intensity calibration because the system transfer response was compensated by calculating the difference spectrum. We conclude that this SERDS strategy can be transferred to Raman studies on biological and non-biological samples with a strong fluorescence background at 785 nm and also shorter excitation wavelengths which benefit from more intense scattering intensities and higher quantum efficiencies of CCD detectors. This journal is
  • Item
    Vectorial calibration of superconducting magnets with a quantum magnetic sensor
    (Melville, NY : American Inst. of Physics, 2020) Botsch, L.; Raatz, N.; Pezzagna, S.; Staacke, R.; John, R.; Abel, B.; Esquinazi, P. D.; Meijer, J.; Diziain, S.
    Cryogenic vector magnet systems make it possible to study the anisotropic magnetic properties of materials without mechanically rotating the sample but by electrically tilting and turning the magnetic field. Vector magnetic fields generated inside superconducting vector magnets are generally measured with three Hall sensors. These three probes must be calibrated over a range of temperatures, and the temperature-dependent calibrations cannot be easily carried out inside an already magnetized superconducting magnet because of remaining magnetic fields. A single magnetometer based on an ensemble of nitrogen vacancy (NV) centers in diamond is proposed to overcome these limitations. The quenching of the photoluminescence intensity emitted by NV centers can determine the field in the remanent state of the solenoids and allows an easy and fast canceling of the residual magnetic field. Once the field is reset to zero, the calibration of this magnetometer can be performed in situ by a single measurement of an optically detected magnetic resonance spectrum. Thereby, these magnetometers do not require any additional temperature-dependent calibrations outside the magnet and offer the possibility to measure vector magnetic fields in three dimensions with a single sensor. Its axial alignment is given by the crystal structure of the diamond host, which increases the accuracy of the field orientation measured with this sensor, compared to the classical arrangement of three Hall sensors. It is foreseeable that the magnetometer described here has the potential to be applied in various fields in the future, such as the characterization of ferromagnetic core solenoids or other magnetic arrangements. © 2020 Author(s).
  • Item
    Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Galler, Kerstin; Requardt, Robert Pascal; Glaser, Uwe; Markwart, Robby; Bocklitz, Thomas; Bauer, Michael; Popp, Jürgen; Neugebauer, Ute
    Hepatic stellate cells (HSCs) are retinoid storing cells in the liver: The retinoid content of those cells changes depending on nutrition and stress level. There are also differences with regard to a HSC’s anatomical position in the liver. Up to now, retinoid levels were only accessible from bulk measurements of tissue homogenates or cell extracts. Unfortunately, they do not account for the intercellular variability. Herein, Raman spectroscopy relying on excitation by the minimally destructive wavelength 785 nm is introduced for the assessment of the retinoid state of single HSCs in freshly isolated, unprocessed murine liver lobes. A quantitative estimation of the cellular retinoid content is derived. Implications of the retinoid content on hepatic health state are reported. The Raman-based results are integrated with histological assessments of the tissue samples. This spectroscopic approach enables single cell analysis regarding an important cellular feature in unharmed tissue.
  • Item
    Soil hydraulic interpretation of nuclear magnetic resonance measurements based on circular and triangular capillary models
    (Hoboken, NJ : Wiley, 2021) Costabel, Stephan; Hiller, Thomas
    Geophysical nuclear magnetic resonance (NMR) applications are used to estimate pore size distributions (PSDs) of rocks and sediments. This is commonly realized by empirical calibration using information about the surface-to-volume ratio of the material. Recent research has developed joint inversion concepts for NMR relaxation data that provides the PSD with a minimum of information. The application requires the NMR signal of a sample at saturation and at least one at partial saturation and at known suction. The new inversion concept physically simulates the desaturation process as part of the forward operator. The cross-section of the model capillaries in the underlying bundle can be either circular or triangular. Our study investigates the performance of the NMR joint inversion to predict water retention function (WRF) and capillary-based hydraulic conductivity (Kcap) as functions of saturation for different sands. The angularity of the pores has no significant impact on the estimated WRF but affects the Kcap estimation significantly. Our study shows that the WRF is predicted reliably for sand samples under fast diffusion conditions. The Kcap estimations are also plausible but tend to systematic overestimation, for which we identified the tortuosity being the main reason. Because NMR relaxation data generally do not provide tortuosity information, a plausible tortuosity model remains an issue of classical calibration. Further development of the approach will thus consider tortuosity measurements (e.g., by electrical resistivity measurements and/or gradient NMR) and will consider the relaxation mechanisms outside fast diffusion conditions to enhance its applicability for coarse soils.