Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

2016, Daellenbach, K.R., Bozzetti, C., Kล™epelovรก, A., Canonaco, F., Wolf, R., Zotter, P., Fermo, P., Crippa, M., Slowik, J.G., Sosedova, Y., Zhang, Y., Huang, R.-J., Poulain, L., Szidat, S., Baltensperger, U., El Haddad, I., Prรฉvรดt, A.S.H.

Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10โ€ฏยตm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60โ€“91โ€ฏ%) achieved using this technique, together with low detection limits (0.8โ€ฏยตg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.

Loading...
Thumbnail Image
Item

In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity

2015, Beekmann, M., Prรฉvรดt, A.S.H., Drewnick, F., Sciare, J., Pandis, S.N., Denier van der Gon, H.A.C., Crippa, M., Freutel, F., Poulain, L., Ghersi, V., Rodriguez, E., Beirle, S., Zotter, P., von der Weiden-Reinmรผller, S.-L., Bressi, M., Fountoukis, C., Petetin, H., Szidat, S., Schneider, J., Rosso, A., El Haddad, I., Megaritis, A., Zhang, Q.J., Michoud, V., Slowik, J.G., Moukhtar, S., Kolmonen, P., Stohl, A., Eckhardt, S., Borbon, A., Gros, V., Marchand, N., Jaffrezo, J.L., Schwarzenboeck, A., Colomb, A., Wiedensohler, A., Borrmann, S., Lawrence, M., Baklanov, A., Baltensperger, U.

A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies.

Loading...
Thumbnail Image
Item

On the application and grid-size sensitivity of the urban dispersion model CAIRDIO v2.0 under real city weather conditions

2022, Weger, Michael, Baars, Holger, Gebauer, Henriette, Merkel, Maik, Wiedensohler, Alfred, Heinold, Bernd

There is a gap between the need for city-wide air-quality simulations considering the intra-urban variability and mircoscale dispersion features and the computational capacities that conventional urban microscale models require. This gap can be bridged by targeting model applications on the gray zone situated between the mesoscale and large-eddy scale. The urban dispersion model CAIRDIO is a new contribution to the class of computational-fluid dynamics models operating in this scale range. It uses a diffuse-obstacle boundary method to represent buildings as physical obstacles at gray-zone resolutions in the order of tens of meters. The main objective of this approach is to find an acceptable compromise between computationally inexpensive grid sizes for spatially comprehensive applications and the required accuracy in the description of building and boundary-layer effects. In this paper, CAIRDIO is applied on the simulation of black carbon and particulate matter dispersion for an entire mid-size city using a uniform horizontal grid spacing of 40gm. For model evaluation, measurements from five operational air monitoring stations representative for the urban background and high-traffic roads are used. The comparison also includes the mesoscale host simulation, which provides the boundary conditions. The measurements show a dominant influence of the mixing layer evolution at background sites, and therefore both the mesoscale and large-eddy simulation (LES) results are in good agreement with the observed air pollution levels. In contrast, at the high-traffic sites the proximity to emissions and the interactions with the building environment lead to a significantly amplified diurnal variability in pollutant concentrations. These urban road conditions can only be reasonably well represented by CAIRDIO while the meosocale simulation indiscriminately reproduces a typical urban-background profile, resulting in a large positive model bias. Remaining model discrepancies are further addressed by a grid-spacing sensitivity study using offline-nested refined domains. The results show that modeled peak concentrations within street canyons can be further improved by decreasing the horizontal grid spacing down to 10gm, but not beyond. Obviously, the default grid spacing of 40gm is too coarse to represent the specific environment within narrow street canyons. The accuracy gains from the grid refinements are still only modest compared to the remaining model error, which to a large extent can be attributed to uncertainties in the emissions. Finally, the study shows that the proposed gray-scale modeling is a promising downscaling approach for urban air-quality applications. The results, however, also show that aspects other than the actual resolution of flow patterns and numerical effects can determine the simulations at the urban microscale.

Loading...
Thumbnail Image
Item

Population ageing and deaths attributable to ambient PM2ยท5 pollution: a global analysis of economic cost

2021, Yin, Hao, Brauer, Michael, Zhang, Junfeng (Jim), Cai, Wenjia, Navrud, Stรฅle, Burnett, Richard, Howard, Courtney, Deng, Zhu, Kammen, Daniel M., Schellnhuber, Hans Joachim, Chen, Kai, Kan, Haidong, Chen, Zhan-Ming, Chen, Bin, Zhang, Ning, Mi, Zhifu, Coffman, D'Maris, Cohen, Aaron J., Guan, Dabo, Zhang, Qiang, Gong, Peng, Liu, Zhu

Background: The health impacts of ambient air pollution impose large costs on society. Although all people are exposed to air pollution, the older population (ie, those aged โ‰ฅ60 years) tends to be disproportionally affected. As a result, there is growing concern about the health impacts of air pollution as many countries undergo rapid population ageing. We investigated the spatial and temporal variation in the economic cost of deaths attributable to ambient air pollution and its interaction with population ageing from 2000 to 2016 at global and regional levels. Methods: In this global analysis, we developed an age-adjusted measure of the value of a statistical life-year (VSLY) to estimate the economic cost of deaths attributable to ambient PM2ยท5 pollution using Global Burden of Diseases, Injuries, and Risk Factors Study 2017 data and country-level socioeconomic information. First, we estimated the global age-specific and cause-specific mortality and years of life lost (YLLs) attributable to PM2ยท5 pollution using the global exposure mortality model and global estimates of exposure at 0ยท1ยฐ ร— 0ยท1ยฐ (about 11 km ร— 11 km at the equator) resolution. Second, for each year between 2000 and 2016, we translated the YLLs within each age group into a health-related cost using a country-specific, age-adjusted measure of VSLY. Third, we decomposed the major driving factors that contributed to the temporal change in health costs related to PM2ยท5. Finally, we did a sensitivity test to analyse the variability of the estimated health costs to four alternative valuation measures. We identified the uncertainty intervals (UIs) from 1000 draws of the parameters and concentrationโ€“response functions by age, cause, country, and year. All economic values are reported in 2011 purchasing power parity-adjusted US dollars. All simulations were done with R, version 3.6.0. Findings: Globally, in 2016, PM2ยท5 was estimated to have caused 8ยท42 million (95% UI 6ยท50โ€“10ยท52) attributable deaths, which was associated with 163ยท68 million (116ยท03โ€“219ยท44) YLLs. In 2016, the global economic cost of deaths attributable to ambient PM2ยท5 pollution for the older population was US$2ยท40 trillion (1ยท89โ€“2ยท93) accounting for 59% (59โ€“60) of the cost for the total population ($4ยท09 trillion [3ยท19โ€“5ยท05]). The economic cost per capita for the older population was $2739 (2160โ€“3345) in 2016, which was 10 times that of the younger population (ie, those aged <60 years). By assessing the factors that contributed to economic costs, we found that increases in these factors changed the total economic cost by 77% for gross domestic product (GDP) per capita, 21% for population ageing, 16% for population growth, โˆ’41% for age-specific mortality, and โˆ’0ยท4% for PM2ยท5 exposure. Interpretation: The economic cost of ambient PM2ยท5 borne by the older population almost doubled between 2000 and 2016, driven primarily by GDP growth, population ageing, and population growth. Compared with younger people, air pollution leads to disproportionately higher health costs among older people, even after accounting for their relatively shorter life expectancy and increased disability. As the world's population is ageing, the disproportionate health cost attributable to ambient PM2ยท5 pollution potentially widens the health inequities for older people. Countries with severe air pollution and rapid ageing rates need to take immediate actions to improve air quality. In addition, strategies aimed at enhancing health-care services, especially targeting the older population, could be beneficial for reducing the health costs of ambient air pollution. Funding: National Natural Science Foundation of China, China Postdoctoral Science Foundation, and Qiushi Foundation.

Loading...
Thumbnail Image
Item

Changes in black carbon emissions over Europe due to COVID-19 lockdowns

2021, Evangeliou, Nikolaos, Platt, Stephen M., Eckhardt, Sabine, Lund Myhre, Cathrine, Laj, Paolo, Alados-Arboledas, Lucas, Backman, John, Brem, Benjamin T., Fiebig, Markus, Flentje, Harald, Marinoni, Angela, Pandolfi, Marco, Yus-Dรฌez, Jesus, Prats, Natalia, Putaud, Jean P., Sellegri, Karine, Sorribas, Mar, Eleftheriadis, Konstantinos, Vratolis, Stergios, Wiedensohler, Alfred, Stohl, Andreas

Following the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for COVID-19 in December 2019 in Wuhan (China) and its spread to the rest of the world, the World Health Organization declared a global pandemic in March 2020. Without effective treatment in the initial pandemic phase, social distancing and mandatory quarantines were introduced as the only available preventative measure. In contrast to the detrimental societal impacts, air quality improved in all countries in which strict lockdowns were applied, due to lower pollutant emissions. Here we investigate the effects of the COVID-19 lockdowns in Europe on ambient black carbon (BC), which affects climate and damages health, using in situ observations from 17 European stations in a Bayesian inversion framework. BC emissions declined by 23 kt in Europe (20 % in Italy, 40 % in Germany, 34 % in Spain, 22 % in France) during lockdowns compared to the same period in the previous 5 years, which is partially attributed to COVID-19 measures. BC temporal variation in the countries enduring the most drastic restrictions showed the most distinct lockdown impacts. Increased particle light absorption in the beginning of the lockdown, confirmed by assimilated satellite and remote sensing data, suggests residential combustion was the dominant BC source. Accordingly, in central and Eastern Europe, which experienced lower than average temperatures, BC was elevated compared to the previous 5 years. Nevertheless, an average decrease of 11 % was seen for the whole of Europe compared to the start of the lockdown period, with the highest peaks in France (42 %), Germany (21 %), UK (13 %), Spain (11 %) and Italy (8 %). Such a decrease was not seen in the previous years, which also confirms the impact of COVID-19 on the European emissions of BC.

Loading...
Thumbnail Image
Item

Organic aerosol source apportionment by offline-AMS over a full year in Marseille

2017, Bozzetti, Carlo, El Haddad, Imad, Salameh, Dalia, Daellenbach, Kaspar Rudolf, Fermo, Paola, Gonzalez, Raquel, Minguillรณn, Marรญa Cruz, Iinuma, Yoshiteru, Poulain, Laurent, Elser, Miriam, Mรผller, Emanuel, Slowik, Jay Gates, Jaffrezo, Jean-Luc, Baltensperger, Urs, Marchand, Nicolas, Prรฉvรดt, Andrรฉ Stephan Henry

We investigated the seasonal trends of OA sources affecting the air quality of Marseille (France), which is the largest harbor of the Mediterranean Sea. This was achieved by measurements of nebulized filter extracts using an aerosol mass spectrometer (offline-AMS). In total 216 PM2.5 (particulate matter with an aerodynamic diameter < 2.5 ฮผm) filter samples were collected over 1 year from August 2011 to July 2012. These filters were used to create 54 composite samples which were analyzed by offline-AMS. The same samples were also analyzed for major water-soluble ions, metals, elemental and organic carbon (EC/OC), and organic markers, including n-alkanes, hopanes, polycyclic aromatic hydrocarbons (PAHs), lignin and cellulose pyrolysis products, and nitrocatechols. The application of positive matrix factorization (PMF) to the water-soluble AMS spectra enabled the extraction of five factors, related to hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), oxygenated OA (OOA), and an industry-related OA (INDOA). Seasonal trends and relative contributions of OA sources were compared with the source apportionment of OA spectra collected from the AMS field deployment at the same station but in different years and for shorter monitoring periods (February 2011 and July 2008). Online- and offline-AMS source apportionment revealed comparable seasonal contribution of the different OA sources. Results revealed that BBOA was the dominant source during winter, representing on average 48 % of the OA, while during summer the main OA component was OOA (63 % of OA mass on average). HOA related to traffic emissions contributed on a yearly average 17 % to the OA mass, while COA was a minor source contributing 4 %. The contribution of INDOA was enhanced during winter (17 % during winter and 11 % during summer), consistent with an increased contribution from light alkanes, light PAHs (fluoranthene, pyrene, phenanthrene), and selenium, which is commonly considered as a unique coal combustion and coke production marker. Online- and offline-AMS source apportionments revealed evolving levoglucosan : BBOA ratios, which were higher during late autumn and March. A similar seasonality was observed in the ratios of cellulose combustion markers to lignin combustion markers, highlighting the contribution from cellulose-rich biomass combustion, possibly related to agricultural activities.

Loading...
Thumbnail Image
Item

Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic

2020, Liu, Zhu, Ciais, Philippe, Deng, Zhu, Lei, Ruixue, Davis, Steven J., Feng, Sha, Zheng, Bo, Cui, Duo, Dou, Xinyu, Zhu, Biqing, Guo, Rui, Ke, Piyu, Sun, Taochun, Lu, Chenxi, He, Pan, Wang, Yuan, Yue, Xu, Wang, Yilong, Lei, Yadong, Zhou, Hao, Cai, Zhaonan, Wu, Yuhui, Guo, Runtao, Han, Tingxuan, Xue, Jinjun, Boucher, Olivier, Boucher, Eulalie, Chevallier, Frรฉdรฉric, Tanaka, Katsumasa, Wei, Yiming, Zhong, Haiwang, Kang, Chongqing, Zhang, Ning, Chen, Bin, Xi, Fengming, Liu, Miaomiao, Brรฉon, Franรงois-Marie, Lu, Yonglong, Zhang, Qiang, Guan, Dabo, Gong, Peng, Kammen, Daniel M., He, Kebin, Schellnhuber, Hans Joachim

The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (โˆ’1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemicโ€™s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.

Loading...
Thumbnail Image
Item

Air pollution trapping in the Dresden Basin from gray-zone scale urban modeling

2023, Weger, Michael, Heinold, Bernd

The microscale variability of urban air pollution is essentially driven by the interaction between meteorology and urban topography, which remains challenging to represent spatially accurately and computationally efficiently in urban dispersion models. Natural topography can additionally exert a considerable amplifying effect on urban background pollution, depending on atmospheric stability. This requires an equally important representation in models, as even subtle terrain-height variations can enforce characteristic local flow regimes. In this model study, the effects of urban and natural topography on the local winds and air pollution dispersion in the Dresden Basin in the Eastern German Elbe valley are investigated. A new, efficient urban microscale model is used within a multiscale air quality modeling framework. The simulations that consider real meteorological and emission conditions focus on two periods in late winter and early summer, respectively, as well as on black carbon (BC), a key air pollutant mainly emitted from motorized traffic. As a complement to the commonly used mass concentrations, the particle age content (age concentration) is simulated. This concept, which was originally developed to study hydrological reservoir flows in a Eulerian framework, is adapted here for the first time for atmospheric boundary-layer modeling. The approach is used to identify stagnant or recirculating orographic air flows and resulting air pollution trapping. An empirical orthogonal function (EOF) analysis is applied to the simulation results to attribute the air pollution modes to specific weather patterns and quantify their significance. Air quality monitoring data for the region are used for model evaluation. The model results show a strong sensitivity to atmospheric conditions, but generally confirm increased BC levels in Dresden due to the valley location. The horizontal variability of mass concentrations is dominated by the patterns of traffic emissions, which overlay potential orography-driven pollutant accumulations. Therefore, an assessment of the orographic impact on air pollution is usually inconclusive. However, using the age-concentration metric, which filters out direct emission effects, previously undetected spatial patterns are discovered that are largely modulated by the surface orography. The comparison with a dispersion simulation assuming spatially homogeneous emissions also proves the robustness of the orographic flow information contained in the age-concentration distribution and shows it to be a suitable metric for assessing orographic air pollution trapping. The simulation analysis indicates several air quality hotspots on the southwestern slopes of the Dresden Basin and in the southern side valley, the Dรถhlen Basin, depending on the prevailing wind direction.

Loading...
Thumbnail Image
Item

The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500

2020, Meinshausen, Malte, Nicholls, Zebedee R. J., Lewis, Jared, Gidden, Matthew J., Vogel, Elisabeth, Freund, Mandy, Beyerle, Urs, Gessner, Claudia, Nauels, Alexander, Bauer, Nico, Canadell, Josep G., Daniel, John S., John, Andrew, Krummel, Paul B., Luderer, Gunnar, Meinshausen, Nicolai, Montzka, Stephen A., Rayner, Peter J., Reimann, Stefan, Smith, Steven J., van den Berg, Marten, Velders, Guus J. M., Vollmer, Martin K., Wang, Ray H. J.

Anthropogenic increases in atmospheric greenhouse gas concentrations are the main driver of current and future climate change. The integrated assessment community has quantified anthropogenic emissions for the shared socio-economic pathway (SSP) scenarios, each of which represents a different future socio-economic projection and political environment. Here, we provide the greenhouse gas concentrations for these SSP scenarios โ€“ using the reduced-complexity climateโ€“carbon-cycle model MAGICC7.0. We extend historical, observationally based concentration data with SSP concentration projections from 2015 to 2500 for 43 greenhouse gases with monthly and latitudinal resolution. CO2 concentrations by 2100 range from 393 to 1135โ€‰ppm for the lowest (SSP1-1.9) and highest (SSP5-8.5) emission scenarios, respectively. We also provide the concentration extensions beyond 2100 based on assumptions regarding the trajectories of fossil fuels and land use change emissions, net negative emissions, and the fraction of non-CO2 emissions. By 2150, CO2 concentrations in the lowest emission scenario are approximately 350โ€‰ppm and approximately plateau at that level until 2500, whereas the highest fossil-fuel-driven scenario projects CO2 concentrations of 1737โ€‰ppm and reaches concentrations beyond 2000โ€‰ppm by 2250. We estimate that the share of CO2 in the total radiative forcing contribution of all considered 43 long-lived greenhouse gases increases from 66โ€‰% for the present day to roughly 68โ€‰% to 85โ€‰% by the time of maximum forcing in the 21st century. For this estimation, we updated simple radiative forcing parameterizations that reflect the Oslo Line-By-Line model results. In comparison to the representative concentration pathways (RCPs), the five main SSPs (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are more evenly spaced and extend to lower 2100 radiative forcing and temperatures. Performing two pairs of six-member historical ensembles with CESM1.2.2, we estimate the effect on surface air temperatures of applying latitudinally and seasonally resolved GHG concentrations. We find that the ensemble differences in the Marchโ€“Aprilโ€“May (MAM) season provide a regional warming in higher northern latitudes of up to 0.4โ€‰K over the historical period, latitudinally averaged of about 0.1โ€‰K, which we estimate to be comparable to the upper bound (โˆผ5โ€‰% level) of natural variability. In comparison to the comparatively straight line of the last 2000 years, the greenhouse gas concentrations since the onset of the industrial period and this studies' projections over the next 100 to 500 years unequivocally depict a โ€œhockey-stickโ€ upwards shape. The SSP concentration time series derived in this study provide a harmonized set of input assumptions for long-term climate science analysis; they also provide an indication of the wide set of futures that societal developments and policy implementations can lead to โ€“ ranging from multiple degrees of future warming on the one side to approximately 1.5โ€‰โˆ˜C warming on the other.

Loading...
Thumbnail Image
Item

Nucleation of jet engine oil vapours is a large source of aviation-related ultrafine particles

2022, Ungeheuer, Florian, Caudillo, Lucรญa, Ditas, Florian, Simon, Mario, van Pinxteren, Dominik, Kฤฑlฤฑรง, DoฤŸuลŸhan, Rose, Diana, Jacobi, Stefan, Kรผrten, Andreas, Curtius, Joachim, Vogel, Alexander L.

Large airports are a major source of ultrafine particles, which spread across densely populated residential areas, affecting air quality and human health. Jet engine lubrication oils are detectable in aviation-related ultrafine particles, however, their role in particle formation and growth remains unclear. Here we show the volatility and new-particle-formation ability of a common synthetic jet oil, and the quantified oil fraction in ambient ultrafine particles downwind of Frankfurt International Airport, Germany. We find that the oil mass fraction is largest in the smallest particles (10-18 nm) with 21% on average. Combining ambient particle-phase concentration and volatility of the jet oil compounds, we determine a lower-limit saturation ratio larger than 1 ร— 105 for ultra-low volatility organic compounds. This indicates that the oil is an efficient nucleation agent. Our results demonstrate that jet oil nucleation is an important mechanism that can explain the abundant observations of high number concentrations of non-refractory ultrafine particles near airports.