Search Results

Now showing 1 - 10 of 25
  • Item
    Statistical Analysis of Scanning Fluorescence Correlation Spectroscopy Data Differentiates Free from Hindered Diffusion
    (Washington, DC : Soc., 2018-7-20) Schneider, Falk; Waithe, Dominic; Lagerholm, B. Christoffer; Shrestha, Dilip; Sezgin, Erdinc; Eggeling, Christian; Fritzsche, Marco
    Cells rely on versatile diffusion dynamics in their plasma membrane. Quantification of this often heterogeneous diffusion is essential to the understanding of cell regulation and function. Yet such measurements remain a major challenge in cell biology, usually due to low sampling throughput, a necessity for dedicated equipment, sophisticated fluorescent label strategies, and limited sensitivity. Here, we introduce a robust, broadly applicable statistical analysis pipeline for large scanning fluorescence correlation spectroscopy data sets, which uncovers the nanoscale heterogeneity of the plasma membrane in living cells by differentiating free from hindered diffusion modes of fluorescent lipid and protein analogues.
  • Item
    Dumbbell gold nanoparticle dimer antennas with advanced optical properties
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2018) Herrmann, Janning F.; Höppener, Christiane
    Plasmonic nanoantennas have found broad applications in the fields of photovoltaics, electroluminescence, non-linear optics and for plasmon enhanced spectroscopy and microscopy. Of particular interest are fundamental limitations beyond the dipolar approximation limit. We introduce asymmetric gold nanoparticle antennas (AuNPs) with improved optical near-field properties based on the formation of sub-nanometer size gaps, which are suitable for studying matter with high-resolution and single molecule sensitivity. These dumbbell antennas are characterized in regard to their far-field and near-field properties and are compared to similar dimer and trimer antennas with larger gap sizes. The tailoring of the gap size down to sub-nanometer length scales is based on the integration of rigid macrocyclic cucurbituril molecules. Stable dimer antennas are formed with an improved ratio of the electromagnetic field enhancement and confinement. This ratio, taken as a measure of the performance of an antenna, can even exceed that exhibited by trimer AuNP antennas composed of comparable building blocks with larger gap sizes. Fluctuations in the far-field and near-field properties are observed, which are likely caused by distinct deviations of the gap geometry arising from the faceted structure of the applied colloidal AuNPs.
  • Item
    Integrated Energy System Optimization Based on Standardized Matrix Modeling Method
    (Basel : MDPI, 2018-11-23) Li, Jingchao; Ying, Yulong; Lou, Xingdan; Fan, Juanjuan; Chen, Yunlongyu; Bi, Dongyuan
    Aiming at the optimization of an integrated energy system, a standardized matrix modeling method and optimization method for an integrated energy system is proposed. Firstly, from the perspective of system engineering, the energy flow between energy conversion devices is used as a state variable to deal with nonlinear problems caused by the introduction of scheduling factors, and a standardized matrix model of the integrated energy system is constructed. Secondly, based on the proposed model, the structural optimization (i.e., energy flow structure and equipment type), design optimization (i.e., equipment capacity and quantity), and operation optimization for the integrated energy system can be achieved. The simulation case studies have shown that the proposed integrated energy system standardized matrix modeling method and optimization method are both simple and efficient, and can be effectively used to decide the system components and their interconnections, and the technical characteristics and daily operating strategy of the system components.
  • Item
    How to minimize dye-induced perturbations while studying biomembrane structure and dynamics: PEG linkers as a rational alternative
    (Amsterdam : Elsevier, 2018) Mobarak, Edouard; Javanainen, Matti; Kulig, Waldemar; Honigmann, Alf; Sezgin, Erdinc; Aho, Noora; Eggeling, Christian; Rog, Tomasz; Vattulainen, Ilpo
    Organic dye-tagged lipid analogs are essential for many fluorescence-based investigations of complex membrane structures, especially when using advanced microscopy approaches. However, lipid analogs may interfere with membrane structure and dynamics, and it is not obvious that the properties of lipid analogs would match those of non-labeled host lipids. In this work, we bridged atomistic simulations with super-resolution imaging experiments and biomimetic membranes to assess the performance of commonly used sphingomyelin-based lipid analogs. The objective was to compare, on equal footing, the relative strengths and weaknesses of acyl chain labeling, headgroup labeling, and labeling based on poly-ethyl-glycol (PEG) linkers in determining biomembrane properties. We observed that the most appropriate strategy to minimize dye-induced membrane perturbations and to allow consideration of Brownian-like diffusion in liquid-ordered membrane environments is to decouple the dye from a membrane by a PEG linker attached to a lipid headgroup. Yet, while the use of PEG linkers may sound a rational and even an obvious approach to explore membrane dynamics, the results also suggest that the dyes exploiting PEG linkers interfere with molecular interactions and their dynamics. Overall, the results highlight the great care needed when using fluorescent lipid analogs, in particular accurate controls.
  • Item
    Orchestrated control of filaggrin-actin scaffolds underpins cornification
    (London [u.a.] : Nature Publishing Group, 2018) Gutowska-Owsiak, Danuta; de La Serna, Jorge Bernardino; Fritzsche, Marco; Naeem, Aishath; Podobas, Ewa I.; Leeming, Michael; Colin-York, Huw; O’Shaughnessy, Ryan; Eggeling, Christian; Ogg, Graham S.
    Epidermal stratification critically depends on keratinocyte differentiation and programmed death by cornification, leading to formation of a protective skin barrier. Cornification is dynamically controlled by the protein filaggrin, rapidly released from keratohyalin granules (KHGs). However, the mechanisms of cornification largely remain elusive, partly due to limitations of the observation techniques employed to study filaggrin organization in keratinocytes. Moreover, while the abundance of keratins within KHGs has been well described, it is not clear whether actin also contributes to their formation or fate. We employed advanced (super-resolution) microscopy to examine filaggrin organization and dynamics in skin and human keratinocytes during differentiation. We found that filaggrin organization depends on the cytoplasmic actin cytoskeleton, including the role for α- and β-actin scaffolds. Filaggrin-containing KHGs displayed high mobility and migrated toward the nucleus during differentiation. Pharmacological disruption targeting actin networks resulted in granule disintegration and accelerated cornification. We identified the role of AKT serine/threonine kinase 1 (AKT1), which controls binding preference and function of heat shock protein B1 (HspB1), facilitating the switch from actin stabilization to filaggrin processing. Our results suggest an extended model of cornification in which filaggrin utilizes actins to effectively control keratinocyte differentiation and death, promoting epidermal stratification and formation of a fully functional skin barrier.
  • Item
    Spironaphthoxazine switchable dyes for biological imaging
    (Cambridge : RSC Publishing, 2018) Xiong, Yaoyao; Vargas Jentzsch, Andreas; Osterrieth, Johannes W. M.; Sezgin, Erdinc; Sazanovich, Igor V.; Reglinski, Katharina; Galiani, Silvia; Parker, Anthony W.; Eggeling, Christian; Anderson, Harry L.
    Recent developments in super-resolution microscopy have significantly expanded the requirements for switchable dyes, leading to demand for specially designed molecular switches. We report the synthesis and characterization of a spironaphthoxazine photochromic switch (a derivative of palatinate purple) displaying high photoconversion (85-95%) under readily accessible 405 nm light, broad absorption in the visible, and excellent fatigue resistance. The indole substituent on this spironaphthoxazine is twisted out of conjugation with the naphthalene unit, yet it is crucial for activation with visible light. The open colored merocyanine form of the spironaphthoxazine reverts to the closed form with a lifetime of 4.7 s in dichloromethane at 20 °C; this thermal reversion is even faster in more polar solvents. The photochemical quantum yields for ring-opening and ring-closing are approximately 8% and 1%, respectively, in dichloromethane. The ring-opening and ring-closing reactions have been characterized by time-resolved infrared and transient absorption spectroscopies. Ring opening occurs rapidly (τ = 2.1 ns) and efficiently (∼90%) from the singlet excited state to form an intermediate (assigned as a cisoid merocyanine), which returns to the closed ground state (τ = 4.5 ns) in competition with relaxation to the transoid open form (τ = 40 ns). Photochemical ring closing is a faster and simpler process: the excited state proceeds to the closed spirooxazine with a time constant of 0.28 ns. This photochromic switch can be used in conjunction with commercial fluorescent dyes to create a small-molecule switchable fluorescent dyad that shows high contrast and good fatigue resistance in living cells. These properties make the dyads suitable for application in RESOLFT microscopy.
  • Item
    High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging
    (London : Nature Publishing Group, 2018) Turtaev, Sergey; Leite, Ivo T.; Altwegg-Boussac, Tristan; Pakan, Janelle M. P.; Rochefort, Nathalie L.; Čižmár, Tomáš
    Progress in neuroscience relies on new techniques for investigating the complex dynamics of neuronal networks. An ongoing challenge is to achieve minimally invasive and high-resolution observations of neuronal activity in vivo inside deep brain areas. Recently introduced methods for holographic control of light propagation in complex media enable the use of a hair-thin multimode optical fibre as an ultranarrow imaging tool. Compared to endoscopes based on graded-index lenses or fibre bundles, this new approach offers a footprint reduction exceeding an order of magnitude, combined with a significant enhancement in resolution. We designed a compact and high-speed system for fluorescent imaging at the tip of a fibre, achieving a resolution of 1.18 ± 0.04 µm across a 50-µm field of view, yielding 7-kilopixel images at a rate of 3.5 frames/s. Furthermore, we demonstrate in vivo observations of cell bodies and processes of inhibitory neurons within deep layers of the visual cortex and hippocampus of anaesthetised mice. This study paves the way for modern microscopy to be applied deep inside tissues of living animal models while exerting a minimal impact on their structural and functional properties.
  • Item
    Nanoparticles Can Wrap Epithelial Cell Membranes and Relocate Them Across the Epithelial Cell Layer
    (Washington, DC : ACS Publ., 2018-7-24) Urbančič, Iztok; Garvas, Maja; Kokot, Boštjan; Majaron, Hana; Umek, Polona; Cassidy, Hilary; Škarabot, Miha; Schneider, Falk; Galiani, Silvia; Arsov, Zoran; Koklic, Tilen; Matallanas, David; Čeh, Miran; Muševič, Igor; Eggeling, Christian; Štrancar, Janez
    Although the link between the inhalation of nanoparticles and cardiovascular disease is well established, the causal pathway between nanoparticle exposure and increased activity of blood coagulation factors remains unexplained. To initiate coagulation tissue factor bearing epithelial cell membranes should be exposed to blood, on the other side of the less than a micrometre thin air-blood barrier. For the inhaled nanoparticles to promote coagulation, they need to bind lung epithelial-cell membrane parts and relocate them into the blood. To assess this hypothesis, we use advanced microscopy and spectroscopy techniques to show that the nanoparticles wrap themselves with epithelial-cell membranes, leading to the membrane’s disruption. The membrane-wrapped nanoparticles are then observed to freely diffuse across the damaged epithelial cell layer relocating epithelial cell membrane parts over the epithelial layer. Proteomic analysis of the protein content in the nanoparticles wraps/corona finally reveals the presence of the coagulation-initiating factors, supporting the proposed causal link between the inhalation of nanoparticles and cardiovascular disease.
  • Item
    Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging
    (Washington, DC : ACS Publ., 2018-6-12) Schneider, Falk; Waithe, Dominic; Galiani, Silvia; Bernardino de la Serna, Jorge; Sezgin, Erdinc; Eggeling, Christian
    The diffusion dynamics in the cellular plasma membrane provide crucial insights into molecular interactions, organization, and bioactivity. Beam-scanning fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (scanning STED–FCS) measures such dynamics with high spatial and temporal resolution. It reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially for each pixel along the scanned line. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED–FCS measurement method, line interleaved excitation scanning STED–FCS (LIESS–FCS), that discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS–FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS–FCS to investigate the spatiotemporal organization of glycosylphosphatidylinositol-anchored proteins in the plasma membrane of live cells, which, interestingly, show multiple diffusion modes at different spatial positions.
  • Item
    Advances in bioimaging - Challenges and potentials
    (Bristol : IOP Publ., 2018) Eggeling, Christian
    [No abstract available]