Search Results

Now showing 1 - 8 of 8
  • Item
    Multiproxy approach to the reconstruction of soil denudation events and the disappearance of Luvisols in the loess landscape of south-western Poland
    (Amsterdam : Elsevier, 2022) Loba, Aleksandra; Zhang, Junjie; Tsukamoto, Sumiko; Kasprzak, Marek; Beata Kowalska, Joanna; Frechen, Manfred; Waroszewski, Jarosław
    Loess landscapes are highly susceptible to soil redeposition processes and thus may provide detailed insights into the record of denudation processes. Using optically stimulated luminescence dating and the soil micromorphology of 12 soil profiles, we reconstructed a complete record of denudation processes in south-western Poland. The first episode of soil redeposition took place around 9.1 ka. The denudation events that followed were attributed to the Neolithic (6.4 ± 0.3 ka), early Bronze Age (3.8 ± 0.2 ka), early and late Middle Ages (1.5 ± 0.1 ka and 0.7 ± 0.03 ka, respectively) and early Modern (0.4 ± 0.02 ka). As a consequence of the denudation processes, the soil cover in the studied area had been strongly reshaped. The predominant Luvisols had experienced progressive erosion processes that led first to a significant shallowing of the eluvial and argic horizons (truncated Luvisol) and, after some time, to their complete removal. Further thinning of the loess mantles had exposed geological substrates with very weak pedogenic alternations, thus pushing their transformation towards Regosol types. Similarly, Regosols occurred in toeslopes where freshly eroded material had been deposited, and where diagnostic horizons had not yet developed. Modern soil erosion rates in the studied loess area have considerably increased, and it is estimated that the Luvisol status may be completely transformed within approximately 80–300 years, if not sooner, due to progressive climate change.
  • Item
    The geodynamic and limnological evolution of Balkan Lake Ohrid, possibly the oldest extant lake in Europe
    (Oxford : Wiley-Blackwell, 2022) Wagner, Bernd; Tauber, Paul; Francke, Alexander; Leicher, Niklas; Binnie, Steven A.; Cvetkoska, Aleksandra; Jovanovska, Elena; Just, Janna; Lacey, Jack H.; Levkov, Zlatko; Lindhorst, Katja; Kouli, Katerina; Krastel, Sebastian; Panagiotopoulos, Konstantinos; Ulfers, Arne; Zaova, Dušica; Donders, Timme H.; Grazhdani, Andon; Koutsodendris, Andreas; Leng, Melanie J.; Sadori, Laura; Scheinert, Mirko; Vogel, Hendrik; Wonik, Thomas; Zanchetta, Giovanni; Wilke, Thomas
    Studies of the upper 447 m of the DEEP site sediment succession from central Lake Ohrid, Balkan Peninsula, North Macedonia and Albania provided important insights into the regional climate history and evolutionary dynamics since permanent lacustrine conditions established at 1.36 million years ago (Ma). This paper focuses on the entire 584-m-long DEEP sediment succession and a comparison to a 197-m-long sediment succession from the Pestani site ~5 km to the east in the lake, where drilling ended close to the bedrock, to unravel the earliest history of Lake Ohrid and its basin development. 26Al/10Be dating of clasts from the base of the DEEP sediment succession implies that the sedimentation in the modern basin started at c. 2 Ma. Geophysical, sedimentological and micropalaeontological data allow for chronological information to be transposed from the DEEP to the Pestani succession. Fluvial conditions, slack water conditions, peat formation and/or complete desiccation prevailed at the DEEP and Pestani sites until 1.36 and 1.21 Ma, respectively, before a larger lake extended over both sites. Activation of karst aquifers to the east probably by tectonic activity and a potential existence of neighbouring Lake Prespa supported filling of Lake Ohrid. The lake deepened gradually, with a relatively constant vertical displacement rate of ~0.2 mm a−1 between the central and the eastern lateral basin and with greater water depth presumably during interglacial periods. Although the dynamic environment characterized by local processes and the fragmentary chronology of the basal sediment successions from both sites hamper palaeoclimatic significance prior to the existence of a larger lake, the new data provide an unprecedented and detailed picture of the geodynamic evolution of the basin and lake that is Europe’s presumed oldest extant freshwater lake.
  • Item
    Weibull-distributed dyke thickness reflects probabilistic character of host-rock strength
    ([London] : Nature Publishing Group UK, 2014) Krumbholz, Michael; Hieronymus, Christoph F.; Burchardt, Steffi; Troll, Valentin R.; Tanner, David C.; Friese, Nadine
    Magmatic sheet intrusions (dykes) constitute the main form of magma transport in the Earth’s crust. The size distribution of dykes is a crucial parameter that controls volcanic surface deformation and eruption rates and is required to realistically model volcano deformation for eruption forecasting. Here we present statistical analyses of 3,676 dyke thickness measurements from different tectonic settings and show that dyke thickness consistently follows the Weibull distribution. Known from materials science, power law-distributed flaws in brittle materials lead to Weibull-distributed failure stress. We therefore propose a dynamic model in which dyke thickness is determined by variable magma pressure that exploits differently sized host-rock weaknesses. The observed dyke thickness distributions are thus site-specific because rock strength, rather than magma viscosity and composition, exerts the dominant control on dyke emplacement. Fundamentally, the strength of geomaterials is scale-dependent and should be approximated by a probability distribution.
  • Item
    A tale of shifting relations: East Asian summer and winter monsoon variability during the Holocene
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Kaboth-Bahr, Stefanie; Bahr, André; Zeeden, Christian; Yamoah, Kweku A.; Lone, Mahjoor Ahmad; Chuang, Chih-Kai; Löwemark, Ludvig; Wei, Kuo-Yen
    Understanding the dynamics between the East Asian summer (EASM) and winter monsoon (EAWM) is needed to predict their variability under future global warming scenarios. Here, we investigate the relationship between EASM and EAWM as well as the mechanisms driving their variability during the last 10,000 years by stacking marine and terrestrial (non-speleothem) proxy records from the East Asian realm. This provides a regional and proxy independent signal for both monsoonal systems. The respective signal was subsequently analysed using a linear regression model. We find that the phase relationship between EASM and EAWM is not time-constant and significantly depends on orbital configuration changes. In addition, changes in the Atlantic Meridional Overturning circulation, Arctic sea-ice coverage, El Niño-Southern Oscillation and Sun Spot numbers contributed to millennial scale changes in the EASM and EAWM during the Holocene. We also argue that the bulk signal of monsoonal activity captured by the stacked non-speleothem proxy records supports the previously argued bias of speleothem climatic archives to moisture source changes and/or seasonality.
  • Item
    Organic carbon burial is paced by a ∼173-ka obliquity cycle in the middle to high latitudes
    (Washington, DC [u.a.] : Assoc., 2021) Huang, He; Gao, Yuan; Ma, Chao; Jones, Matthew M.; Zeeden, Christian; Ibarra, Daniel E.; Wu, Huaichun; Wang, Chengshan
    Earth’s climate system is complex and inherently nonlinear, which can induce some extraneous cycles in paleoclimatic proxies at orbital time scales. The paleoenvironmental consequences of these extraneous cycles are debated owing to their complex origin. Here, we compile high-resolution datasets of total organic carbon (TOC) and stable carbon isotope (δ13Corg) datasets to investigate organic carbon burial processes in middle to high latitudes. Our results document a robust cyclicity of ~173 thousand years (ka) in both TOC and δ13Corg. The ~173-ka obliquity–related forcing signal was amplified by internal climate feedbacks of the carbon cycle under different geographic and climate conditions, which control a series of sensitive climatic processes. In addition, our new and compiled records from multiple proxies confirm the presence of the obliquity amplitude modulation (AM) cycle during the Mesozoic and Cenozoic and indicate the usefulness of the ~173-ka cycle as geochronometer and for paleoclimatic interpretation.
  • Item
    An astronomical age-depth model and reconstruction of moisture availability in the sediments of Lake Chalco, central Mexico, using borehole logging data
    (Oxford [u.a.] : Elsevier, 2022) Sardar Abadi, Mehrdad; Zeeden, Christian; Ulfers, Arne; Wonik, Thomas
    Understanding the moisture history of low latitudes from the most recent glacial period of the latest Pleistocene to post-glacial warmth in continental tropical regions is hampered by the lack of continuous time series. We conducted downhole spectral gamma (γ) ray and magnetic susceptibility logs over 300 m of lacustrine deposits of Lake Chalco (Mexico City) to reconstruct an age-depth model using an astronomical and correlative approach, and to reconstruct long-term moisture availability. Our results suggest that the Lake Chalco sediments contain several rhythmic alternations with a quasi-cyclic pattern comparable to the Pleistocene benthic stack. This allows us to calculate a time span of about 500,000 years for this sediment deposition. We developed proxies for moisture, detrital input, and salinity, all based on the physical properties of γ-ray spectroscopy and magnetic susceptibility. Our results indicate that Lake Chalco formed during Marine Isotope Stage 13 (MIS13) and the lake level gradually increased over time until the interglacial MIS9. Moisture content is generally higher during interglacials than during glacials. However, two periods, namely MIS6 and MIS4, have higher moisture contents. We developed a model by comparing the obtained moisture proxy with climatic drivers, to understand how different climate systems drove effective moisture availability in the Chalco sub-basin over the past 500,000 years. Carbon dioxide, eccentricity, and precession are all key drivers of the moisture content of Lake Chalco over the past 500,000 years.
  • Item
    “Climatic fluctuations in the hyperarid core of the Atacama Desert during the past 215 ka”
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Ritter, Benedikt; Wennrich, Volker; Medialdea, Alicia; Brill, Dominik; King, Georgina; Schneiderwind, Sascha; Niemann, Karin; Fernández-Galego, Emma; Diederich, Julia; Rolf, Christian; Bao, Roberto; Melles, Martin; Dunai, Tibor J.
    Paleoclimate records from the Atacama Desert are rare and mostly discontinuous, mainly recording runoff from the Precordillera to the east, rather than local precipitation. Until now, paleoclimate records have not been reported from the hyperarid core of the Atacama Desert (<2 mm/yr). Here we report the results from multi-disciplinary investigation of a 6.2 m drill core retrieved from an endorheic basin within the Coastal Cordillera. The record spans the last 215 ka and indicates that the long-term hyperarid climate in the Central Atacama witnessed small but significant changes in precipitation since the penultimate interglacial. Somewhat ‘wetter’ climate with enhanced erosion and transport of material into the investigated basin, commenced during interglacial times (MIS 7, MIS 5), whereas during glacial times (MIS 6, MIS 4–1) sediment transport into the catchment was reduced or even absent. Pelagic diatom assemblages even suggest the existence of ephemeral lakes in the basin. The reconstructed wetter phases are asynchronous with wet phases in the Altiplano but synchronous with increased sea-surface temperatures off the coasts of Chile and Peru, i.e. resembling modern El Niño-like conditions.
  • Item
    Drilling Overdeepened Alpine Valleys (ICDP-DOVE): Quantifying the age, extent, and environmental impact of Alpine glaciations
    (Sapporo : IODP, 2022) Anselmetti, Flavio S.; Bavec, Milos; Crouzet, Christian; Fiebig, Markus; Gabriel, Gerald; Preusser, Frank; Ravazzi, Cesare
    The sedimentary infill of glacially overdeepened valleys (i.e., structures eroded below the fluvial base level) is an excellent but yet underexplored archive with regard to the age, extent, and nature of past glaciations. The ICDP project DOVE (Drilling Overdeepened Alpine Valleys) Phase 1 investigates a series of drill cores from glacially overdeepened troughs at several locations along the northern front of the Alps. All sites will be investigated with regard to several aspects of environmental dynamics during the Quaternary, with focus on the glaciation, vegetation, and landscape history. Geophysical methods (e.g., seismic surveys), for example, will explore the geometry of overdeepened structures to better understand the process of overdeepening. Sedimentological analyses combined with downhole logging, analysis of biological remains, and state-of-the-art geochronological methods, will enable us to reconstruct the erosion and sedimentation history of the overdeepened troughs. This approach is expected to yield significant novel data quantifying the extent and timing of Middle and Late Pleistocene glaciations of the Alps. In a first phase, two sites were drilled in late 2021 into filled overdeepenings below the paleolobe of the Rhine Glacier, and both recovered a trough filling composed of multiphase glacial sequences. Fully cored Hole 5068_1_C reached a depth of 165m and recovered 10m molasse bedrock at the base. This hole will be used together with two flush holes (5068_1_A, 5068_1_B) for further geophysical cross-well experiments. Site 5068_2 reached a depth of 255m and bottomed out near the soft rock-bedrock contact. These two sites are complemented by three legacy drill sites that previously recovered filled overdeepenings below the more eastern Alpine Isar-Loisach, Salzach, and Traun paleoglacier lobes (5068_3, 5068_4, 5068_5). All analysis and interpretations of this DOVE Phase 1 will eventually lay the ground for an upcoming Phase 2 that will complete the pan-Alpine approach. This follow-up phase will investigate overdeepenings formerly occupied by paleoglacier lobes from the western and southern Alpine margins through drilling sites in France, Italy, and Slovenia. Available geological information and infrastructure make the Alps an ideal area to study overdeepened structures; however, the expected results of this study will not be restricted to the Alps. Such features are also known from other formerly glaciated mountain ranges, which are less studied than the Alps and more problematic with regards to drilling logistics. The results of this study will serve as textbook concepts to understand a full range of geological processes relevant to formerly glaciated areas all over our planet.