Search Results

Now showing 1 - 4 of 4
  • Item
    Physico-Chemical Properties and Deposition Potential of PM2.5 during Severe Smog Event in Delhi, India
    (Basel : MDPI AG, 2022) Fatima, Sadaf; Mishra, Sumit Kumar; Ahlawat, Ajit; Dimri, Ashok Priyadarshan
    The present work studies a severe smog event that occurred in Delhi (India) in 2017, targeting the characterization of PM2.5 and its deposition potential in human respiratory tract of different population groups in which the PM2.5 levels raised from 124.0 µg/m3 (pre-smog period) to 717.2 µg/m3 (during smog period). Higher concentration of elements such as C, N, O, Na, Mg, Al, Si, S, Fe, Cl, Ca, Ti, Cr, Pb, Fe, K, Cu, Cl, P, and F were observed during the smog along with dominant organic functional groups (aldehyde, ketones, alkyl halides (R-F; R-Br; R-Cl), ether, etc.), which supported potential contribution from transboundary biomass-burning activities along with local pollution sources and favorable meteorological conditions. The morphology of individual particles were found mostly as non-spherical, including carbon fractals, aggregates, sharp-edged, rod-shaped, and flaky structures. A multiple path particle dosimetry (MPPD) model showed significant deposition potential of PM2.5 in terms of deposition fraction, mass rate, and mass flux during smog conditions in all age groups. The highest PM2.5 deposition fraction and mass rate were found for the head region followed by the alveolar region of the human respiratory tract. The highest mass flux was reported for 21-month-old (4.7 × 102 µg/min/m2), followed by 3-month-old (49.2 µg/min/m2) children, whereas it was lowest for 21-year-old adults (6.8 µg/min/m2), indicating babies and children were more vulnerable to PM2.5 pollution than adults during smog. Deposition doses of toxic elements such as Cr, Fe, Zn, Pb, Cu, Mn, and Ni were also found to be higher (up to 1 × 10−7 µg/kg/day) for children than adults.
  • Item
    Effect of heatwave conditions on aerosol optical properties derived from satellite and ground-based remote sensing over Poland
    (Basel : MDPI, 2017) Stachlewska, Iwona S.; Zawadzka, Olga; Engelmann, Ronny
    During an exceptionally warm September in 2016, unique and stable weather conditions contributed to a heat wave over Poland, allowing for observations of aerosol optical properties, using a variety of ground-based and satellite remote sensors. The data set collected during 11–16 September 2016 was analysed in terms of aerosol transport (HYbrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT)), aerosol load model simulations (Copernicus Atmosphere Monitoring Service (CAMS), Navy Aerosol Analysis and Prediction System (NAAPS), Global Environmental Multiscale-Air Quality (GEM-AQ), columnar aerosol load measured at ground level (Aerosol Robotic NETwork (AERONET), Polish Aerosol Research Network (PolandAOD)) and from satellites (Spinning Enhanced Visible and Infrared Imager (SEVIRI), Moderate Resolution Imaging Spectroradiometer (MODIS)), as well as with 24/7 PollyXT Raman Lidar observations at the European Aerosol Research Lidar Network (EARLINET) site in Warsaw. Analyses revealed a single day of a relatively clean background aerosol related to an Arctic air-mass inflow, surrounded by a few days with a well increased aerosol load of differing origin: pollution transported from Germany and biomass burning from Ukraine. Such conditions proved excellent to test developed-in-house algorithms designed for near real-time aerosol optical depth (AOD) derivation from the SEVIRI sensor. The SEVIRI AOD maps derived over the territory of Poland, with an exceptionally high resolution (every 15 min; 5.5 × 5.5 km2), revealed on an hourly scale, very low aerosol variability due to heat wave conditions. Comparisons of SEVIRI with NAAPS and CAMS AOD maps show strong qualitative similarities; however, NAAPS underestimates AOD and CAMS tends to underestimate it on relatively clean days (<0.2), and overestimate it for a high aerosol load (>0.4). A slight underestimation of the SEVIRI AOD is reported for pixel-to-column comparisons with AODs of several radiometers (AERONET, PolandAOD) and Lidar (EARLINET) with high correlation coefficients (r2 of 0.8–0.91) and low root-mean-square error (RMSE of 0.03–0.05). A heat wave driven increase of the boundary layer height of 10% is accompanied with the AOD increase of 8–12% for an urban site dominated by anthropogenic pollution. Contrary trend, with an AOD decrease of around 4% for a rural site dominated by a long-range transported biomass burning aerosol is reported. There is a positive feedback of heat wave conditions on local and transported pollution and an extenuating effect on transported biomass burning aerosol. The daytime mean SEVIRI PM2.5 converted from the SEVIRI AODs at a pixel representative for Warsaw is in agreement with the daily mean PM2.5 surface measurements, whereby SEVIRI PM2.5 and Lidar-derived Ångström exponent are anti-correlated.
  • Item
    CRAAS: A European Cloud Regime dAtAset Based on the CLAAS-2.1 Climate Data Record
    (Basel : MDPI, 2022) Tzallas, Vasileios; Hünerbein, Anja; Stengel, Martin; Meirink, Jan Fokke; Benas, Nikos; Trentmann, Jörg; Macke, Andreas
    Given the important role of clouds in our planet’s climate system, it is crucial to further improve our understanding of their governing processes as well as the resulting spatio-temporal variability of their properties. This co-variability of different cloud optical properties is adequately represented through the well-established concept of cloud regimes. The focus of the present study lies on the creation of a cloud regime dataset over Europe, named “Cloud Regime dAtAset based on the CLAAS-2.1 climate data record” (CRAAS), in order to analyze their variability and their changes at different spatio-temporal scales. In addition, co-occurrences between the cloud regimes and large-scale weather patterns are investigated. The CLoud property dAtAset using Spinning Enhanced Visible and Infrared (SEVIRI) edition 2.1 (CLAAS-2.1) data record, which is produced by the Satellite Application Facility on Climate Monitoring (CM SAF), was used as the basis for the derivation of the cloud regimes over Europe for a 14-year period (2004–2017). In particular, the cloud optical thickness (COT) and cloud top pressure (CTP) products of CLAAS-2.1 were used in order to compute 2D histograms. Then, the k-means clustering algorithm was applied to the generated 2D histograms in order to derive the cloud regimes. Eight cloud regimes were identified, which, along with the geographical distribution of their frequency of occurrence, assisted in providing a detailed description of the climate of the cloud properties over Europe. The annual and diurnal variabilities of the eight cloud regimes were studied, and trends in their frequency of occurrence were also examined. Larger changes in the frequency of occurrence of the produced cloud regimes were found for a regime associated to alto- and nimbo-type clouds and for a regime connected to shallow cumulus clouds and fog (−0.65% and +0.70% for the time period of the study, respectively).
  • Item
    Modification of local urban aerosol properties by long-range transport of biomass burning aerosol
    (Basel : MDPI, 2018) Stachlewska, Iwona S.; Samson, Mateusz; Zawadzka, Olga; Harenda, Kamila M.; Janicka, Lucja; Poczta, Patryk; Szczepanik, Dominika; Heese, Birgit; Wang, Dongxiang; Borek, Karolina; Tetoni, Eleni; Proestakis, Emmanouil; Siomos, Nikolaos; Nemuc, Anca; Chojnicki, Bogdan H.; Markowicz, Krzysztof M.; Pietruczuk, Aleksander; Szkop, Artur; Althausen, Dietrich; Stebel, Kerstin; Schuettemeyer, Dirk; Zehner, Claus
    During August 2016, a quasi-stationary high-pressure system spreading over Central and North-Eastern Europe, caused weather conditions that allowed for 24/7 observations of aerosol optical properties by using a complex multi-wavelength PollyXT lidar system with Raman, polarization and water vapour capabilities, based at the European Aerosol Research Lidar Network (EARLINET network) urban site in Warsaw, Poland. During 24–30 August 2016, the lidar-derived products (boundary layer height, aerosol optical depth, Ångström exponent, lidar ratio, depolarization ratio) were analysed in terms of air mass transport (HYSPLIT model), aerosol load (CAMS data) and type (NAAPS model) and confronted with active and passive remote sensing at the ground level (PolandAOD, AERONET, WIOS-AQ networks) and aboard satellites (SEVIRI, MODIS, CATS sensors). Optical properties for less than a day-old fresh biomass burning aerosol, advected into Warsaw’s boundary layer from over Ukraine, were compared with the properties of long-range transported 3–5 day-old aged biomass burning aerosol detected in the free troposphere over Warsaw. Analyses of temporal changes of aerosol properties within the boundary layer, revealed an increase of aerosol optical depth and Ångström exponent accompanied by an increase of surface PM10 and PM2.5. Intrusions of advected biomass burning particles into the urban boundary layer seem to affect not only the optical properties observed but also the top height of the boundary layer, by moderating its increase.